MAT 302 Assignment Problem Natural Log Functions Integration | Borough of Manhattan Community College

MAT 302  Assignment Problem Natural Log Functions Integration | Borough of Manhattan Community College

Question 1

 

(1 point) Evaluate the indefinite integral.

x+2x2+4x+5dx

 

 

 

Question 2

 

(1 point) Find the following integral. Note that you can check your answer by differentiation.

 

 

 

 

Question 3

 

(1 point) Find the following integral. Note that you can check your answer by differentiation.

 

 

 

 

 

Question 4

 

(1 point) Evaluate the indefinite integral.

4dxxln(6x)

 

 

 

Question 5

 

1 point) Evaluate the following definite integral.

20167x9dx

 

 

 

 

 

Question 6

 

(1 point) Logarithms as anti-derivatives.

6x(lnx)2dx

 

 

 

 

 

Question 7

(1 point) Evaluate the definite integral.

e31dxx(1+lnx)∫1e3dxx(1+lnx)

 

 

 

 

Question 8

 

(1 point) Consider the function

f(x)={x1xif x<1if x≥1f(x)={xif x<11xif x≥1

Evaluate the definite integral.

4−2f(x)dx

 

 

 

 

Question 9

 

(1 point) Find the indefinite integral by uu - substitution.

11+2x−−√dx

 

 

Question 10

 

(1 point) Solve the differential equation.

drdt=sec2(t)tan(t)+1drdt=sec2(t)tan(t)+1

 

 

 

Question 11

 

Part I

Derive the formula for the indefinite integral of csc(x).

csc(x)dx∫csc(x)dx

 

Part 1:

Multiply csc(x)csc(x) by csc(x)+cot(x)csc(x)+cot(x)csc(x)+cot(x)csc(x)+cot(x) to get

(csc2(x)+csc(x)cot(x))/(csc(x)+cot(x))

Part 2:

Let uu be the denominator of the previous answer

dudu = (−csc2(x)−csc(x)cot(x))dx

Part 3:

Rewrite the integral using uu

csc(x)dx∫csc(x)dx =  (−1/u)du

Part 4:

Integrate your previous answer:

−ln|u|+C

Hint:

Part 5:

Substitute back uu and give the answer

csc(x)dx∫csc(x)dx = −ln|csc(x)+cot(x)|+C

Part II

Evaluate the definite integral.

π4π8(csc2θcot2θ)

 

 

 

 

 

 

  1. Question Attachments

    0 attachments —

Answer Detail

Get This Answer

Invite Tutor