MAT 302 Assignment Problem 8.2 | Borough of Manhattan Community College

MAT 302 Assignment Problem 8.2 | Borough of Manhattan Community College

8.2 Integration by parts

Question 1

(1 point)

Solve (11x+7)exdx∫(11x+7)exdx using Integration by Parts.

Use u=11x+7u=11x+7 and dv=exdxdv=exdx.

 

 

Question 2

 point) Use integration by parts to find the following:

(t+7)e2t+3dt

 

Question 3

(1 point) Use integration by parts to evaluate the integral.

 

Question 4

(1 point) Evaluate the indefinite integral.

lnxx6dx

 

 

Question 5

(1 point) Evaluate the integral.

3xsin(5x)dx∫3xsin(5x)dx



Note: Use an upper-case "C" for the constant of integration.

 

Question 6

(1 point) Find the integral

 

Question 7

 (1 point) Find the integral.

e2xsin(7x)dx

 

Question 8

(1 point)

Evaluate the integral

e−1tcos(−2t)dt

 

 

 

 

Question 9

(1 point) Use integration by parts to evaluate the indefinite integral when x>0x>0

ln(x13)dx.

 

 

Question 10

(1 point) Evaluate the indefinite integral.

 

Question 11

(1 point) Evaluate the definite integral.

61tln(t)dt

 

Question 12

(1 point) Use integration by parts to evaluate the definite integral

70tetdt.

 

 

 

 

Question 13

Evaluate the integral

108ye2ydy

 

 

Question 14

(1 point) Evaluate the integral

0.50.3cosxln(3sinx)dx.

 

 

Question 15

(1 point) If g(1)=2,g(1)=2, g(5)=6,g(5)=6, and 51g(x)dx=−6,∫15g(x)dx=−6, evaluate the integral 51xg(x)dx.

 

 

Question 16

(1 point)

(a) Use the reduction formula

cosn(x)dx=1ncosn−1(x)sin(x)+n−1ncosn−2(x)dx∫cosn(x)dx=1ncosn−1(x)sin(x)+n−1n∫cosn−2(x)dx

to evaluate the integral

cos2(x)dx.

 

 

 

Question 17

(1 point)

Use the reduction formula

xnexdx=xnexnxn−1exdx∫xnexdx=xnex−n∫xn−1exdx

to evaluate the integral

x4exdx.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Answer Detail

Get This Answer

Invite Tutor