MAT/117 MAT117 MAT 117 WEEK 9 QUIZ 1. Select the difference of (4x2 - 3x3) - (2x2 - 7x3). • 6x6 • 6x5 • 2x2 - 10x3 • 2x2 + 4x3 2. Simplify the following expression. 2(8x + 3) • 16x + 6 • 16x + 3 • 22x • 10x + 5 3. Select the product of (9x - 2)(6x + 9). • 54x2 - 69x - 18 • 123x - 18 • 54x2 + 69x - 18 • 15x + 7 4. Simplify the following expression. (x + 4)3 • 64x3 • x3 + 64 • x3 + 12x2 + 48x + 64 • x3 + 12 5. Select the product of (9x + 8)(9x - 8). • 81x2 - 64 • 81x2 - 144x - 64 • 18x2 • 18x 6. Select the product of (6x + 7)(x2 - 3x + 1). • 6x3 - 11x2 - 15x + 7 • 13x2 - 39x + 13 • 6x3 - 25x2 - 27x + 7 • x2 + 3x + 8 7. Select the product of (-6x4y)(x5y4). • 6x9y5 • -6x9y5 • -6x20y2 • 6x20y4 8. Select the product of (7x - 7)(7x - 7). • 49x2 + 49 • 49x2 + 98x + 49 • 49x2 - 49 • 49x2 - 98x + 49 9. Select the product of (3x+7)â‹…(7x−3)(3x+7)â‹…(7x−3). • 21x2+40x−2121x2+40x−21 • 10x2+8x+410x2+8x+4 • 10x2+40x−2110x2+40x−21 • 21x2−2121x2−21 10. Select the difference of (2x2−13x+7)−(1−12x)(2x2−13x+7)−(1−12x). • 2x2−25x+82x2−25x+8 • 2x2+x−62x2+x−6 • 2x2−x+62x2−x+6 • x2+6x2+6 11. Factor the expression. x2 + 13x + 40 • (x + 1)(x + 40) • (x + 5)(x + 8) • (x - 5)(x - 8) • Prime Polynomial 12. Factor the expression. x2 - 11x + 24 • (x - 3)(x - 8) • (x - 12)(x - 2) • (x - 12)(x + 2) • Prime Polynomial 13. Factor the expression. x2 - 30x + 81 • (x - 9)2 • (x - 1)(x - 81) • (x - 3)(x - 27) • Prime Polynomial 14. Factor the expression. 21x2 + 46x + 24 • (3x - 4)(7x - 6) • (3x + 4)(7x + 6) • (21x + 6)(x + 4) • Prime Polynomial 15. Factor the expression. 63x2 + 93x + 12 • 3(3x - 4)(7x - 1) • 3(3x + 4)(7x + 1) • (63x + 1)(x + 12) • Prime Polynomial 16. Factor the expression. -10x2 - 29x - 21 • -(5x - 7)(2x + 3) • -(5x + 7)(2x + 3) • (-5x + 7)(2x + 3) • Prime Polynomial 17. Factor the expression. x2 + 2x + 24 • (x + 1)(x + 24) • (x + 3)2 • (x + 3)(x + 8) • Prime Polynomial 18. Factor the expression. 64x2 - 9 • (8x + 3)(8x - 3) • (8x + 3)2 • (8x - 3)2 • Prime Polynomial 19. Factor the expression. y2 + 18xy + 81x2 • (y - 9x)² • (y + 9x)² • (y + 9x)(y - 9x) • Prime Polynomial 20. Factor the expression. −216x3+1−216x3+1 • (−6x+1)(36x2+6x+1)(−6x+1)(36x2+6x+1) • (−6x+1)3(−6x+1)3 • (−6x−1)(36x2−6x+1)(−6x−1)(36x2−6x+1) • Prime Polynomial 21. Simplify the following rational expression. x2−25x2−3x−10x2−25x2−3x−10 • x+5x+2x+5x+2 • 3.5x3.5x • 2.5x−102.5x−10 • x2−25x2−3x−10x2−25x2−3x−10 22. Select the product. 9x−1â‹…7x−39x−1â‹…7x−3 • 63x−463x−4 • 9x+277x−79x+277x−7 • 63(x−1)(x−3)63(x−1)(x−3) • 16(x−1)(x−3)16(x−1)(x−3) 23. Select the quotient: x+4x−1÷x2+xx−1x+4x−1÷x2+xx−1 • x+4x(x+1)x+4x(x+1) • x+4(x−1)2x+4(x−1)2 • 1x1x • x2+4x+42xx2+4x+42x 24. Select the difference. 32x−1−52x−132x−1−52x−1 • −15(2x−1)2−15(2x−1)2 • −22x−1−22x−1 • −152x−1−152x−1 • 00 25. Select the sum: x3x−6+18x3x−6+18 • x24(x−2)x24(x−2) • 1+x3x+21+x3x+2 • x24x−48x24x−48 • 11x−624(x−2)11x−624(x−2) 26. Select the value of xx that is a solution for this equation: 6x=7x+36x=7x+3 • −3−3 • 1818 • 66 • 99 27. An object 8.7 feet tall casts a shadow that is 26.1 feet long. How long in feet would the shadow be for an object which is17.7 feet tall? • 0.3 feet • 5.9 feet • 35.1 feet • 53.1 feet 28. Simplify the expression: 564−−√35643 • 5454 • 5√34534 • 54√3543 • 564564 29. Simplify the expression. (5 - ) + 9 • 13 • 14 - 7 • 5 + 56 • 9 + 5 30. Simplify the expression: 58+7√58+7 • 557557 • 57√155715 • 5−7√85−78 • 40−57√5740−5757 31. Solve for xx in the equation x2 - 4x - 45 = 0. • {-5, -9} • {5, -9} • {-5, 9} • {5, 9} 32. Consider the equations: f(x)=−6x−1f(x)=−6x−1 and g(x)=4x2g(x)=4x2 Select the solution for (f+g)(x)(f+g)(x). • −6x−1+4x2−6x−1+4x2 • −24x3−4x2−24x3−4x2 • −24x2−1−24x2−1 • −6x−1−24x2−6x−1−24x2 33. Consider the equations: f(x)=−6x−1f(x)=−6x−1 and g(x)=4x2g(x)=4x2 Select the solution for (fg)(x)(fg)(x). • −6x−1+4x2−6x−1+4x2 • −24x3−4x2−24x3−4x2 • −24x2−1−24x2−1 • −24x5−24x5 34. Select the x-coordinate of the vertex of the parabola defined by the function f(x) = -7x2 + 5x +2. • - • 2 • • - 35. Determine the equation of g(x) that results from translating the function f(x) = x2 + 5 upward 6units. • g(x) = (x + 11)2 • g(x) = (x + 6)2 + 5 • g(x) = x2 - 1 • g(x) = x2 + 11 36. Determine the equation of g(x) that results from translating the function f(x) = (x + 6)2 to the right 14units. • g(x) = (x - 8)2 • g(x) = (x + 20)2 • g(x) = (x + 6)2 - 14 • g(x) = (x + 6)2 + 14 37. Select the approximate values of x that are solutions to f(x) = 0, where f(x) = -8x2 + 9x + 7. • {-1.14, 1.29} • {-8, 9} • {-1.13, -0.88} • {-0.53, 1.65} 38. Select the approximate values of x that are solutions to f(x) = 0, where f(x) = -6x2 + 8x + 5. • {1.80, -0.46} • {-6, 8} • {-1.33, -0.83} • {-1.20, 1.60} 39. Select the approximate values of x that are solutions to f(x) = 0, where f(x) = -9x2 + 7x + 2. • {-0.22, 1.00} • {-9, 7} • {-0.78, -0.22} • {-4.50, 3.50} 40. Solve for x in the equation x2 - 13x + 36 = 0. • {4, 9} • {-4, 9} • {4, -9} • {-4, -9} 41. Given the function f(x)=9x+7f(x)=9x+7, find its inverse. • f−1(x)=(x−9)7f−1(x)=(x−9)7 • f−1(x)=x9−7f−1(x)=x9−7 • f−1(x)=(x−7)9f−1(x)=(x−7)9 • f−1(x)=x7−9f−1(x)=x7−9 42. Simplify the logarithm log2(64)logâ¡2(64). Select the correct solution. • 66 • 6464 • 6262 • 3232 43. Select the first five terms in the arithmetic sequence an = 6n, starting with n =1. • {, , , , } • {1, 2, 3, 4, 5} • {7, 8, 9, 10, 11} • {6, 12, 18, 24, 30} 44. Select the first five terms in the geometric sequence an=(2)n−1an=(2)n−1, starting with n=1n=1. • {2,4,8,16,64}{2,4,8,16,64} • {1,2,4,8,16}{1,2,4,8,16} • {1,2,4,6,8}{1,2,4,6,8} • {2,4,6,8,10}{2,4,6,8,10} 45. Select the sum of the series. ∑5k=1k2∑k=15k2 • 5555 • 5656 • 200200 • 225225 Mathematics Help, Mathematics Homework help, Mathematics Study Help, Mathematics Course Help