MAT/117 MAT117 MAT 117 WEEK 9 QUIZ

MAT/117 MAT117 MAT 117 WEEK 9 QUIZ




1.
Select the difference of (4x2 - 3x3) - (2x2 - 7x3). 
•	  
6x6
•	  
6x5
•	 
2x2 - 10x3
•	  
2x2 + 4x3
2.
Simplify the following expression. 2(8x + 3)
•	 
16x + 6
•	  
16x + 3
•	  
22x
•	 
10x + 5
3.
Select the product of (9x - 2)(6x + 9).
•	 
54x2 - 69x - 18
•	  
123x - 18
•	 
54x2 + 69x - 18
•	 
15x + 7
4.
Simplify the following expression. (x + 4)3
•	  
64x3
•	 
x3 + 64
•	  
x3 + 12x2 + 48x + 64
•	  
x3 + 12
5.
Select the product of (9x + 8)(9x - 8).
•	 
81x2 - 64
•	 
 
81x2 - 144x - 64
•	 
 
18x2
•	 
 
18x
6.
Select the product of (6x + 7)(x2 - 3x + 1).
•	 
 
6x3 - 11x2 - 15x + 7
•	 
 
13x2 - 39x + 13
•	 
 
6x3 - 25x2 - 27x + 7
•	 
 
x2 + 3x + 8
7.
Select the product of (-6x4y)(x5y4).
•	 
 
6x9y5
•	 
 
-6x9y5
•	 
 
-6x20y2
•	 
 
6x20y4
8.
Select the product of (7x - 7)(7x - 7).
•	 
 
49x2 + 49
•	 
 
49x2 + 98x + 49
•	 
 
49x2 - 49
•	 
 
49x2 - 98x + 49
9.
Select the product of (3x+7)⋅(7x−3)(3x+7)⋅(7x−3). 
•	 
 
21x2+40x−2121x2+40x−21
•	 
 
10x2+8x+410x2+8x+4
•	 
 
10x2+40x−2110x2+40x−21
•	 
 
21x2−2121x2−21
10.
Select the difference of (2x2−13x+7)−(1−12x)(2x2−13x+7)−(1−12x).
•	 
 
2x2−25x+82x2−25x+8
•	 
 
2x2+x−62x2+x−6
•	 
 
2x2−x+62x2−x+6
•	 
 
x2+6x2+6
11.
Factor the expression. x2 + 13x + 40
•	 
 
(x + 1)(x + 40)
•	 
 
(x + 5)(x + 8)
•	 
 
(x - 5)(x - 8)
•	 
 
Prime Polynomial
12.
Factor the expression. x2 - 11x + 24
•	 
 
(x - 3)(x - 8)
•	 
 
(x - 12)(x - 2)
•	 
 
(x - 12)(x + 2)
•	 
 
Prime Polynomial
13.
Factor the expression. x2 - 30x + 81
•	 
 
(x - 9)2
•	 
 
(x - 1)(x - 81)
•	 
 
(x - 3)(x - 27)
•	 
 
Prime Polynomial
14.
Factor the expression. 21x2 + 46x + 24
•	 
 
(3x - 4)(7x - 6)
•	 
 
(3x + 4)(7x + 6)
•	 
 
(21x + 6)(x + 4)
•	 
 
Prime Polynomial
15.
Factor the expression. 63x2 + 93x + 12
•	 
 
3(3x - 4)(7x - 1)
•	 
 
3(3x + 4)(7x + 1)
•	 
 
(63x + 1)(x + 12)
•	 
 
Prime Polynomial
16.
Factor the expression. -10x2 - 29x - 21
•	 
 
-(5x - 7)(2x + 3)
•	 
 
-(5x + 7)(2x + 3)
•	 
 
(-5x + 7)(2x + 3)
•	 
 
Prime Polynomial
17.
Factor the expression. x2 + 2x + 24
•	 
 
(x + 1)(x + 24)
•	 
 
(x + 3)2
•	 
 
(x + 3)(x + 8)
•	 
 
Prime Polynomial
18.
Factor the expression. 64x2 - 9
•	 
 
(8x + 3)(8x - 3)
•	 
 
(8x + 3)2
•	 
 
(8x - 3)2
•	 
 
Prime Polynomial
19.
Factor the expression. y2 + 18xy + 81x2
•	 
 
(y - 9x)²
•	 
 
(y + 9x)²
•	 
 
(y + 9x)(y - 9x)
•	 
 
Prime Polynomial
20.
Factor the expression. −216x3+1−216x3+1
•	 
 
(−6x+1)(36x2+6x+1)(−6x+1)(36x2+6x+1)
•	 
 
(−6x+1)3(−6x+1)3
•	 
 
(−6x−1)(36x2−6x+1)(−6x−1)(36x2−6x+1)
•	 
 
Prime Polynomial
21.
Simplify the following rational expression. 
x2−25x2−3x−10x2−25x2−3x−10
•	 
 
x+5x+2x+5x+2
•	 
 
3.5x3.5x
•	 
 
2.5x−102.5x−10
•	 
 
x2−25x2−3x−10x2−25x2−3x−10
22.
Select the product.
9x−1⋅7x−39x−1⋅7x−3
•	 
 
63x−463x−4
•	 
 
9x+277x−79x+277x−7
•	 
 
63(x−1)(x−3)63(x−1)(x−3)
•	 
 
16(x−1)(x−3)16(x−1)(x−3)
23.
Select the quotient:
x+4x−1÷x2+xx−1x+4x−1÷x2+xx−1
•	 
 
x+4x(x+1)x+4x(x+1)
•	 
 
x+4(x−1)2x+4(x−1)2
•	 
 
1x1x
•	 
 
x2+4x+42xx2+4x+42x
24.
Select the difference.
32x−1−52x−132x−1−52x−1
•	 
 
−15(2x−1)2−15(2x−1)2
•	 
 
−22x−1−22x−1
•	 
 
−152x−1−152x−1
•	 
 
00
25.
Select the sum:
x3x−6+18x3x−6+18
•	 
 
x24(x−2)x24(x−2)
•	 
 
1+x3x+21+x3x+2
•	 
 
x24x−48x24x−48
•	 
 
11x−624(x−2)11x−624(x−2)
26.
Select the value of xx that is a solution for this equation:
6x=7x+36x=7x+3
•	 
 
−3−3
•	 
 
1818
•	 
 
66
•	 
 
99
27.
An object 8.7 feet tall casts a shadow that is 26.1 feet long. How long in feet would the shadow be for an object which is17.7 feet tall? 
•	 
 
0.3 feet
•	 
 
5.9 feet
•	 
 
35.1 feet
•	 
 
53.1 feet
28.
Simplify the expression:
564−−√35643
•	 
 
5454
•	 
 
5√34534
•	 
 
54√3543
•	 
 
564564
29.
Simplify the expression. (5 - ) + 9
•	 
 
13
•	 
 
14 - 7
•	 
 
5 + 56
•	 
 
9 + 5
30.
Simplify the expression:
58+7√58+7
•	 
 
557557
•	 
 
57√155715
•	 
 
5−7√85−78
•	 
 
40−57√5740−5757
31.
Solve for xx in the equation x2 - 4x - 45 = 0.
•	 
{-5, -9}
•	 
{5, -9}
•	 
{-5, 9}
•	
{5, 9}
32.
Consider the equations:
f(x)=−6x−1f(x)=−6x−1 and g(x)=4x2g(x)=4x2
Select the solution for (f+g)(x)(f+g)(x).
•	 
 
−6x−1+4x2−6x−1+4x2
•	 
 
−24x3−4x2−24x3−4x2
•	 
 
−24x2−1−24x2−1
•	 
 
−6x−1−24x2−6x−1−24x2
33.
Consider the equations:
f(x)=−6x−1f(x)=−6x−1 and g(x)=4x2g(x)=4x2
Select the solution for (fg)(x)(fg)(x).
•	 
 
−6x−1+4x2−6x−1+4x2
•	 
 
−24x3−4x2−24x3−4x2
•	 
 
−24x2−1−24x2−1
•	 
 
−24x5−24x5
34.
Select the x-coordinate of the vertex of the parabola defined by the function f(x) = -7x2 + 5x +2.
•	 
 
- 
•	 
 
2
•	 
 

•	 
 
- 
35.
Determine the equation of g(x) that results from translating the function f(x) = x2 + 5 upward 6units.
•	 
 
g(x) = (x + 11)2
•	 
 
g(x) = (x + 6)2 + 5
•	 
 
g(x) = x2 - 1
•	 
 
g(x) = x2 + 11
36.
Determine the equation of g(x) that results from translating the function f(x) = (x + 6)2 to the right 14units.
•	 
 
g(x) = (x - 8)2
•	 
 
g(x) = (x + 20)2
•	 
 
g(x) = (x + 6)2 - 14
•	 
 
g(x) = (x + 6)2 + 14
37.
Select the approximate values of x that are solutions to f(x) = 0, where
f(x) = -8x2 + 9x + 7.
•	 
 
{-1.14, 1.29}
•	 
 
{-8, 9}
•	 
 
{-1.13, -0.88}
•	 
 
{-0.53, 1.65}
38.
Select the approximate values of x that are solutions to f(x) = 0, where
f(x) = -6x2 + 8x + 5.
•	 
 
{1.80, -0.46}
•	 
 
{-6, 8}
•	 
 
{-1.33, -0.83}
•	 
 
{-1.20, 1.60}
39.
Select the approximate values of x that are solutions to f(x) = 0, where
f(x) = -9x2 + 7x + 2.
•	 
 
{-0.22, 1.00}
•	 
 
{-9, 7}
•	 
 
{-0.78, -0.22}
•	 
 
{-4.50, 3.50}
40.
Solve for x in the equation x2 - 13x + 36 = 0.
•	 
 
{4, 9}
•	 
 
{-4, 9}
•	 
 
{4, -9}
•	 
 
{-4, -9}
41.
Given the function f(x)=9x+7f(x)=9x+7, find its inverse.
•	 
 
f−1(x)=(x−9)7f−1(x)=(x−9)7
•	 
 
f−1(x)=x9−7f−1(x)=x9−7
•	 
 
f−1(x)=(x−7)9f−1(x)=(x−7)9
•	 
 
f−1(x)=x7−9f−1(x)=x7−9
42.
Simplify the logarithm log2(64)log⁡2(64). Select the correct solution.
•	 
 
66
•	 
 
6464
•	 
 
6262
•	 
 
3232
43.
Select the first five terms in the arithmetic sequence an = 6n, starting with n =1. 
•	 
 
{, , , , }
•	 
 
{1, 2, 3, 4, 5}
•	 
 
{7, 8, 9, 10, 11}
•	 
 
{6, 12, 18, 24, 30}

44.
Select the first five terms in the geometric sequence an=(2)n−1an=(2)n−1, starting with n=1n=1.
•	 
 
{2,4,8,16,64}{2,4,8,16,64}
•	 
 
{1,2,4,8,16}{1,2,4,8,16}
•	 
 
{1,2,4,6,8}{1,2,4,6,8}
•	 
 
{2,4,6,8,10}{2,4,6,8,10}




45.
Select the sum of the series. ∑5k=1k2∑k=15k2
•	 
 
5555
•	 
 
5656
•	 
 
200200
•	 
 
225225




Mathematics Help, Mathematics Homework help, Mathematics Study Help, Mathematics Course Help

Answer Detail

Get This Answer

Invite Tutor