5.4  Artificial Neural Network (ANN) 249

Algorithm 5.4 Perceptron learning algorithm.
1: Let D = {(x;,4:) | ©=1,2,..., N} be the set of training examples.
2: Initialize the weight vector with random values, w(®
3: repeat

4:  for each training example (x;,;) € D do

5 Compute the predicted output Q§k)

6: for each weight w; do

7 Update the weight, w§k+1) = w§k) + Ay — ﬁfk))xij.
8 end for

9:  end for

10: until stopping condition is met

to the prediction error, (y — g). If the prediction is correct, then the weight
remains unchanged. Otherwise, it is modified in the following ways:

o If y = +1 and § = —1, then the prediction error is (y — y) = 2. To
compensate for the error, we need to increase the value of the predicted
output by increasing the weights of all links with positive inputs and
decreasing the weights of all links with negative inputs.

e If y; = —1 and § = +1, then (y — §) = —2. To compensate for the error,
we need to decrease the value of the predicted output by decreasing the
weights of all links with positive inputs and increasing the weights of all
links with negative inputs.

In the weight update formula, links that contribute the most to the error term
are the ones that require the largest adjustment. However, the weights should
not be changed too drastically because the error term is computed only for
the current training example. Otherwise, the adjustments made in earlier
iterations will be undone. The learning rate )\, a parameter whose value is
between 0 and 1, can be used to control the amount of adjustments made in
each iteration. If A is close to 0, then the new weight is mostly influenced
by the value of the old weight. On the other hand, if X is close to 1, then
the new weight is sensitive to the amount of adjustment performed in the
current iteration. In some cases, an adaptive A\ value can be used; initially, A
is moderately large during the first few iterations and then gradually decreases
in subsequent iterations.

The perceptron model shown in Equation 5.23 is linear in its parameters
w and attributes x. Because of this, the decision boundary of a perceptron,
which is obtained by setting 7 = 0, is a linear hyperplane that separates the
data into two classes, —1 and +1. Figure 5.15 shows the decision boundary




250 Chapter 5 Classification: Alternative Techniques

Figure 5.15. Perceptron decision boundary for the data given in Figure 5.14.

obtained by applying the perceptron learning algorithm to the data set given in
Figure 5.14. The perceptron learning algorithm is guaranteed to converge to an
optimal solution (as long as the learning rate is sufficiently small) for linearly
separable classification problems. If the problem is not linearly separable,
the algorithm fails to converge. Figure 5.16 shows an example of nonlinearly
separable data given by the XOR function. Perceptron cannot find the right
solution for this data because there is no linear hyperplane that can perfectly
separate the training instances.

1.5 y T T
1+ + o ;
Xi | Xa | ¥
0 0 1= X2 0.5+ 1
1 0
0|1
1 1 =i 0 g (o] + =
-0.5 L i I
-0.5 0 0.5 1 1.5

X4

Figure 5.16. XOR classification problem. No linear hyperplane can separate the two classes.




