
6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 1/49

10.1 Using JavaScript with HTML

Basics

Like a glossy brochure, a web page with just HTML and CSS is nice to look at but lacks
interaction with the user. JavaScript is a programming language that enables a web page to have
�exible behavior by specifying actions to be taken when events happen in the browser. The
Document Object Model (or DOM) is a general way to represent and access all parts of HTML
and XML documents. Together, JavaScript and the DOM provide browsers with the tools for
making web pages interactive by accessing and changing any part of a web page.

The browser provides an object named document that is a data structure representing the entire
web page DOM, including HTML and all other resources included by the web page, like CSS,
image, and JavaScript �les. Changes made to that data structure will be re�ected in the browser
presentation and/or behavior.

HTML5 pages add JavaScript code by using the <script> tag. JavaScript code between
<script></script> tags is executed by the browser's JavaScript engine.

PARTICIPATION
ACTIVITY 10.1.1: Writing JavaScript within the body of an HTML �le.

The JavaScript code below uses the document.writeln() method, which outputs HTML
into the document and alters the DOM.

1. Read the HTML and JavaScript below.
2. Render the web page to run the JavaScript code that displays a randomly

generated response.
3. Add more responses to the responses array, and render the web page a few

times until one of your new responses is displayed.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 2/49

PARTICIPATION
ACTIVITY 10.1.2: JavaScript Basics.

1) The DOM only refers to the HTML
portions of the document.

2) The DOM is accessible via the global
object named document.

Render web page Reset code

Your web page

True

False

<!DOCTYPE html>
<html>
<title>Magic 8 Ball</title>
<meta charset="UTF-8">
<body>
 <h1>Magic 8 Ball</h1>
 <script>

 // Possible 8 Ball responses
 var responses = ["Without a doubt", "Ask again later", "Don't count on it"

 // Display a randomly chosen response
 var randomNum = Math.floor(Math.random() * responses.length);
 document.writeln("<p>Magic 8 Ball says... " + responses[randomNum]

 </script>
</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 3/49

3) document.writeln("
<div>test</div>") adds a div
element to the DOM.

Window object

JavaScript running in a web browser has access to the window object, which represents an open
browser window. In a tabbed browser, each tab has a window object. The document object is a
property of the window object and can be accessed as window.document or just document.
Other properties of the window object include:

window.location is a location object that contains information about the window's current
URL. Ex: window.location.hostname is the URL's hostname.
window.navigator is a navigator object that contains information about the browser. Ex:
window.navigator.userAgent returns the browser's user agent string.
window.innerHeight and window.innerWidth are the height and width in pixels of the
window's content area. Ex: window.innnerWidth returns 600 if the browser's content
area is 600 pixels wide.

The window object de�nes some useful methods:

window.alert() displays an alert dialog box. Ex: window.alert("Hello") displays a
dialog box with the message "Hello".
window.con�rm() displays a con�rmation dialog box with OK and Cancel buttons.
confirm() returns true if OK is pressed and false if Cancel is pressed. Ex:
window.confirm("Are you sure?") displays a dialog box with the question.
window.open() opens a new browser window. Ex:
window.open("http://www.twitter.com/") opens a new browser that loads the
Twitter web page.

PARTICIPATION
ACTIVITY 10.1.3: Using the window object.

Use the window.confirm() method to ask if the user would like to see a popup
window:

var okPressed = window.confirm("Would you like to see a popup window?");

Then render the web page, and click the OK button when prompted to see a small
browser window created by window.open(). You may need to give your browser

True

False

True

False

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 4/49

permission to show the popup window since many browsers prevent popups from
displaying by default.

PARTICIPATION
ACTIVITY 10.1.4: Window object.

1) Window object properties or
methods can be accessed without
putting window. in front of the
property or method.

Render web page Reset code

Your web page

True

<!DOCTYPE html>
<html>
<title>JavaScript Demo</title>
<meta charset="UTF-8">
<body>
 <h1>Popup Demo</h1>
 <script>

 var okPressed = false;
 if (okPressed) {
 var myWindow = window.open("", "", "width=250, height=100");
 myWindow.document.writeln("<h1>Hello, Popup!</h1>");
 }

 </script>
</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 5/49

2) What window object property is
useful for determining if the web
page is loaded using HTTPS or
HTTP?

3) What window object property likely
produces the following output?

document.writeln(window.______);
Mozilla/5.0 (Windows NT 10.0;
WOW64) AppleWebKit/537.36
Chrome/53.0.2785.116

4) What window method is ideal for
displaying a pop-up advertisement?

Using the console

Modern browsers provide a console that allows the JavaScript code to produce informational
and debugging output for the web developer, which does not affect the functionality or
presentation of the web page. By default, the console is not open for viewing on a page. The
console is viewable in Chrome by pressing Ctrl+Shift+J in Windows/Linux or Cmd+Opt+J on a
Mac.

When a syntax error is present in JavaScript code or a run-time error occurs, the error is only
made visible in the console. The �gure below shows the syntax error created when the developer
accidentally typed Document.writeln() with a capital "D". The console appears underneath
the web page. Good practice is to leave the console open while writing and testing JavaScript
code.

Figure 10.1.1: Chrome console showing a
syntax error on line 8 of test.html.

False

location

navigator

navigator.userAgent

navigator.language

alert

open

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 6/49

<!DOCTYPE html>
<meta charset="UTF-8">
<html>
<title>JavaScript Demo</title>
<body>
 <h1>JavaScript Demo</h1>
 <script>

 Document.writeln("<p>Hello, JavaScript!</p>");

 </script>
</body>
</html>

The browser provides a console object with a de�ned set of methods, or API, that the console
object supports. An API (Application Programming Interface) is a speci�cation of the methods
and objects that de�nes how a programmer should interact with software components. The
console API includes the following methods:

console.log() displays informational data to the console.
console.warn() displays warnings to the console. The browser usually has a special
indicator to differentiate a warning from the standard log message. Ex: A yellow warning
box.
console.error() displays errors to the console. The browser usually has a special indicator
to differentiate an error from a warning or the standard log message. Ex: A red error box.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 7/49

console.dir() displays a JavaScript object to the console. The browser usually supports a
method for compactly representing the object. Ex: a hierarchical tree representation
allowing a developer to expand and collapse the object contents.

Figure 10.1.2: console.log() output example.

When the web browser console is open, both the web page and the console are
simultaneously visible.

console.log() can print both strings and concise representations of HTML elements.

<body>
 <p>
 Fruit I Like
 </p>

 Apples
 Oranges

 <script>
 console.log(document.getElementsByTagName("ul")[0]);
 </script>
</body>

PARTICIPATION
ACTIVITY 10.1.5: Match terms with de�nitions.

Match the console method with the best use for that method.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 8/49

Helping determine why an
algorithm isn't working as
expected.

Displaying a structured
JavaScript object.

Checking that assumptions in an
algorithm are correct.

Reporting unexpected problems.

Loading JavaScript from an external �le

The <script> tag can be used to include JavaScript directly within the HTML �le and is common
practice when using small amounts of JavaScript. However, writing JavaScript directly within the
document leads to a number of problems as a web page or website gets larger.

Good practice is to use the <script> tags to load JavaScript from external �les, rather than
writing the JavaScript directly within the HTML �le. The <script> src attribute speci�es a
JavaScript �le to load.

Example 10.1.1: Loading JavaScript from an
external �le.

<script src="bootstrap.js"></script>

A common error when loading an external JavaScript �le is to forget the closing </script> tag, or
trying to use a self-closing <script /> tag as in <script src="bootstrap.js" />. All modern browsers
require a closing </script> tag.

PARTICIPATION
ACTIVITY 10.1.6: Loading JavaScript from an HTML �le.

dir error log warn

Reset

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 9/49

PARTICIPATION
ACTIVITY 10.1.7: Downloading JavaScript �les.

1) A web browser will process the
HTML following a script element
that uses an external JavaScript �le
while the browser waits for the web
server to return the JavaScript �le.

2) One script element can be used to
include both inline JavaScript and a
reference to an external JavaScript
�le.

3) One script element can be used to
reference multiple external
JavaScript �les.

Loading JavaScript with async and defer

Although the <script> tag can be included anywhere in the head or body, good practice is to
include the <script> tag early in the document with the async and/or defer attributes set.

Animation captions:

1. The web server sends the HTML �le to the web browser.
2. Web browser reads the HTML �le. Script tag with src attribute indicates the browser

should load JavaScript from an external �le.
3. Web browser requests JavaScript �le from the web server.
4. Web browser reads the JavaScript �le. JavaScript alert statement displays a dialog box

and waits for the user to press enter.
5. After the user presses enter, web browser �nishes reading the JavaScript �le and

continues reading the HTML �le.
6. Web browser requests the image �le, and the web server responds with the image �le.
7. Web browser �nishes reading HTML �le.

True

False

True

False

True

False

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 10/49

The async attribute allows the browser to process the web page concurrently with loading and
processing the JavaScript.

Example 10.1.2: Loading JavaScript with the
async attribute.

<script src="bootstrap.js" async></script>

PARTICIPATION
ACTIVITY 10.1.8: Using the async attribute with the <script> tag.

The defer attribute allows the browser to load the web page concurrently with loading the
JavaScript, but the JavaScript is not processed until the web page is completely loaded.

Example 10.1.3: Loading JavaScript with the
defer attribute.

<script src="bootstrap.js" defer></script>

PARTICIPATION
ACTIVITY 10.1.9: Using the defer attribute with the <script> tag.

Animation captions:

1. The web server sends the HTML �le to the web browser.
2. Web browser reads the HTML �le. Script tag's async attribute causes browser to

continue reading HTML without waiting for JavaScript �le to load.
3. Web server responds with the JavaScript �le while the browser requests the image �le.
4. Web browser begins reading the JavaScript �le and pauses reading the HTML �le. The

web server concurrently responds to the image request. JavaScript alert statement
displays a dialog box and waits for the user to press enter.

5. After the user presses enter, web browser �nishes reading the JavaScript �le and
continues processing the HTML �le by displaying the dog.jpg image that was received.

6. Web browser �nishes reading HTML �le.

Animation captions:

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 11/49

PARTICIPATION
ACTIVITY 10.1.10: Loading JavaScript.

1) The browser interprets the defer
and async attributes for the script
element the same.

2) When using a third-party JavaScript
library, the defer attribute is usually
better than the async attribute.

3) When writing custom JavaScript, the
defer attribute is usually better
than the async attribute.

4) Most web pages on the internet
were written before the defer or
async attributes were standardized.

Mini�cation and obfuscation

To reduce the amount of JavaScript that must be downloaded from a web server,

1. The web server sends the HTML �le to the web browser.
2. Web browser reads the HTML �le. Script tag's defer attribute causes browser to continue

reading HTML without waiting for JavaScript �le to load.
3. Web server responds with the JavaScript �le while the browser requests the image �le.
4. Web browser does not immediately process the JavaScript �le due to the defer attribute.

Instead, the browser continues to process the HTML.
5. After reading the HTML �le, the web browser reads the JavaScript �le. JavaScript alert

statement displays a dialog box and waits for the user to press enter.
6. After the user presses enter, web browser �nishes reading the JavaScript �le.

True

False

True

False

True

False

True

False

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 12/49

developers often minify a website's JavaScript. Mini�cation or minimization is the
process of removing unnecessary characters (like whitespace and comments)

from JavaScript code so the code executes the same but with fewer characters.
Mini�cation software may also rename identi�ers into shorter ones to reduce
space. Ex: var totalReturns = 10; may be converted into var a=10;.

Mini�ed JavaScript is typically stored in a �le with a ".min.js" �le extension. An
example of mini�ed code from the Bootstrap project is shown below.

// Excerpt from bootstrap.min.js
a.fn.button=b,a.fn.button.Constructor=c,a.fn.button.noConflict=function(){
return a.fn.button=d,this},a(document).on("click.bs.button.data-api",
'[data-toggle^="button"]',function(c){var d=a(c.target).closest(".btn");
b.call(d,"toggle"),a(c.target).is('input[type="radio"],

A JavaScript obfuscator is software that converts JavaScript into an unreadable
form that is very di�cult to convert back into readable JavaScript. Developers
obfuscate a website's JavaScript to prevent the code from being read or re-
purposed by others. Obfuscated code may also be mini�ed and appear in a
".min.js" �le.

CHALLENGE
ACTIVITY 10.1.1: JavaScript with HTML.

Start

Use the writeln method of the document object to display the inner height in a <p> tag
in the webpage. Hint: The innerHeight property of the window object contains the inner
height.

<h1>Demo</h1>
<script>

 <!-- Your solution goes here -->

</script>

1
2
3
4
5
6

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

http://getbootstrap.com/getting-started/

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 13/49

Exploring further:

Window object from MDN

Console object from MDN

async vs defer attributes from Growing with the Web

JavaScript mini�ers: javascript-mini�er.com and jscompress.com

JavaScript obfuscators: javascriptobfuscator.com and JS-obfus

2

 Check Next

10.2 Document Object Model (DOM)

Document Object Model (DOM) structure

The Document Object Model (DOM) is a data structure corresponding to the HTML �le. A DOM
tree is a visualization of the DOM data structure. document.documentElement is the root of the
DOM tree (the "top" node). Each tag in an HTML �le is associated with an object in the DOM tree.
A node is an individual object in the DOM tree.

DOM nodes have properties for accessing a node's parent and children nodes. The childNodes
property is an array-like collection of objects for each of the node's children. Each node has a
property parentNode that refers to the parent element containing the node. HTML attributes are
represented in the DOM as similarly named properties on the corresponding node. Ex: The HTML
title attribute becomes the node's title property in the corresponding node.

The DOM tree visualization below corresponds to the given HTML. Green nodes represent HTML
elements. Pink nodes represent HTML attributes. Blue nodes represent text content of HTML
elements. Note the <meta> tag is not included in the DOM tree since the meta tag is used to
describe the contents of the document and is not part of the document contents.

Figure 10.2.1: Visualizing the DOM tree.

1

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Console
http://www.growingwiththeweb.com/2014/02/async-vs-defer-attributes.html
https://javascript-minifier.com/
https://jscompress.com/
https://javascriptobfuscator.com//
http://stunnix.com/prod/jo/

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 14/49

<!DOCTYPE html>
<html>
 <meta charset="UTF-8">
 <title>Broadway Show Lengths</title>
 <body>
 <p id="the_paragraph">Longest running broadway shows:</p>

 The Phantom of the Opera

 Chicago
 The Lion King
 Cats

 </body>
</html>

PARTICIPATION
ACTIVITY 10.2.1: Creating the DOM from an HTML �le.

Animation captions:

1. Web browser reads the HTML �le and creates the DOM root element.
2. The body element is a child of the root node within the DOM. The p element is contained

within the body element, so the p node is a child of the body node in the DOM.
3. An attribute node is created in the DOM for the paragraph element's class attribute.
4. A text node is created for the paragraph element's text content.
5. Browser continues reading the HTML and creating DOM nodes as appropriate.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 15/49

An idealized representation of the DOM tree excludes all text nodes that only contain whitespace.
Normally, the DOM should be conceptualized with that idealized representation. However, a web
developer occasionally needs to know the complete DOM tree, which includes whitespace as
shown in the example below.

Figure 10.2.2: Complete DOM tree visualization
with whitespace text nodes.

<!DOCTYPE html>
<html>
 <meta charset="UTF-8">
 <title>Olympic medals</title>
 <body>

 Gold
 Silver
 Bronze

 </body>
</html>

The DOM provides the children property for a node, which is similar to the childNodes property
except that the children property only contains other DOM nodes and does not contain textual
content. A common error is to use the childNodes property instead of the children property when
iterating through the items of a list. The children property only contains the list items, while the
childNodes property also contains the whitespace textual nodes between the list items.

PARTICIPATION
ACTIVITY 10.2.2: DOM structure.

A DOM object created from an
HTML element.

node children childNodes documentElement parentNode

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 16/49

The DOM object representing the
top HTML element, which
contains the rest of the
document.

A node's array-like object that
contains the HTML elements and
textual content directly contained
within that node.

A node's array-like collection that
only contains the HTML elements
directly contained within that
node.

A reference to a node's parent
node.

Traversing the DOM

The document object provides �ve primary methods of accessing speci�c nodes within the
DOM:

1. document.getElementById: returns the DOM node whose id attribute is the same as the
method's parameter.
Ex: document.getElementById("early_languages") returns the p node in the HTML below.

2. document.getElementsByTagName: returns an array containing all the DOM nodes whose
type is the same as the method's parameter.
Ex: document.getElementsByTagName("li") returns a list of the four li nodes from in the
HTML below.

3. document.getElementsByClassName: returns an array containing all the DOM nodes
whose class attribute matches the method's parameter.
Ex: document.getElementsByClassName("traditional") returns an array containing the ol
node with the class attribute matching the word traditional.

4. document.querySelectorAll: returns an array of containing all the DOM nodes that match
the CSS selector passed as the method's parameter.
Ex: document.querySelectorAll("li a") returns an array containing the two a nodes in the
HTML below .

5. document.querySelector: returns the �rst element found in the DOM that matches the CSS
selector passed as the method's parameter. document.querySelector expects the same
types of parameters as document.querySelectorAll, but only returns the �rst element found

Reset

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 17/49

while navigating the DOM tree in a depth-�rst traversal.
Ex: document.querySelector("li") returns the li node about Fortran.

Figure 10.2.3: Example HTML for traversing the DOM.

<!DOCTYPE html>
<html>
 <meta charset="UTF-8">
 <title>Early Programming Languages</title>
 <body>
 <p id="early_languages">Early Programming Languages Still Used:</p>
 <ol class="traditional">
 Fortran - 1954

 Lisp - 1958

 COBOL - 1959
 BASIC - 1964

 </body>
</html>

Note

A DOM traversal method name indicates whether the method returns one node, or
an array of nodes. If the method name starts with getElements or ends in All, then
the method will return an array, even if the array contains one node or is empty.
getElementById and querySelector methods either return a single node, or return
null if no node matched the method parameters.

PARTICIPATION
ACTIVITY 10.2.3: DOM traversal.

Refer to the HTML below.

<!DOCTYPE html>
<html>
 <meta charset="UTF-8">
 <title>Web development languages</title>
 <body>
 <p>Languages used in web development.</p>
 <ul id="list">
 <li id="item-1">HTML for content
 <li id="item-2">CSS for presentation
 <li id="item-3">JavaScript for functionality

 </body>
</html>

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 18/49

1) Which HTML elements are returned
by: document.getElementById("list")

2) Which HTML elements are returned
by:
document.getElementsByTagName("li")

3) Which HTML element is referenced
by:
document.getElementsByTagName("ul")
[0]

4) Which HTML elements are
referenced by:
document.getElementsByTagName("ul")
[0].children

5) Which HTML element is referenced by:
document.documentElement.children[1]

The paragraph tag (<p>)

The unordered list tag ()

One of the list item tags ()

All of the list item tags ([,
,])

The paragraph tag (<p>)

The unordered list tag ()

One of the list item tags ()

All of the list item tags ([,
,])

The paragraph tag (<p>)

The unordered list tag ()

One of the list item tags ()

All of the list item tags ([,
,])

The paragraph tag (<p>)

The unordered list tag ()

One of the list item tags ()

All of the list item tags ([,
,])

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 19/49

6) Which HTML element is referenced by:
document.documentElement.children[1].children[1]

Additionally, the DOM provides accessor properties for each node that allow direct navigation to
sibling or parent nodes:

1. nextSibling is a node property that refers to the node with the same parent following the
current node in the document. Ex: In the �gure below, the ol node is the nextSibling for the
p node.

2. prevSibling is a node property that refers to the node with the same parent preceding the
current node in the document. Ex: In the �gure below, the p node is the prevSibling for the
ol node.

3. parentNode is a node property that refers to the current node's parent node. Ex: In the
�gure below, the ol node is the parentNode for all of the li nodes.

Figure 10.2.4: Example HTML for sibling methods.

<!DOCTYPE html>
<html>
 <meta charset="UTF-8">
 <title>Geologic eons of earth</title>
 <body>
 <p>The four geologic eons on earth:</p>

 Hadean
 Archean
 Proterozoic
 Phanerozoic

 </body>
</html>

PARTICIPATION
ACTIVITY 10.2.4: Using nextSibling, prevSibling, and parentNode.

The body tag (<body>)

The meta tag (<meta>)

The title tag (<title>)

The paragraph tag (<p>)

The paragraph tag (<p>)

The unordered list tag ()

One of the list item tags ()

All of the list item tags ([, ,])

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 20/49

Refer to the HTML below.

<!DOCTYPE html>
<html>
 <meta charset="UTF-8">
 <title>Web development languages</title>
 <body>
 <p>Languages used in web development.</p>
 <ul id="list">
 <li id="item-1">HTML for content
 <li id="item-2">CSS for presentation
 <li id="item-3">JavaScript for functionality

 </body>
</html>

1) Which HTML element is referenced
by:
document.getElementById("item-
2").prevSibling

2) Which HTML element is referenced
by:
document.getElementById("item-
2").parentNode

3) Which HTML element is referenced
by:
document.getElementById("item-
1").nextSibling

The list item node with the id
item-1.

The list item node with the id
item-2.

The list item node with the id
item-3.

The ul node with the id list.

The list item node with the id
item-1.

The list item node with the id
item-2.

The list item node with the id
item-3.

The ul node with the id list.

The list item node with the id
item-1.

The list item node with the id

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 21/49

DOM attributes

Every attribute for an HTML element has an identically named property in the element's DOM
node. Ex: NASA has a
corresponding DOM node with properties named href and id. Each attribute property name acts
as both a getter and a setter.

Using the property name to read the value allows a program to examine the attribute's value.
Writing to a property allows a program to modify the attribute, which is re�ected in the rendered
web page. Ex:
document.getElementById("nasa_link").href = "http://www.spacex.com/"
changes the hyperlink for the element with id of nasa_link to refer to SpaceX.

By modifying attribute properties, JavaScript programs can perform actions including:

Change which image is displayed by modifying an node's src attribute.
Determine which image is currently being displayed by reading the node's src
attribute.
Change the style of part of the page by modifying a node's class attribute.
Change the functionality of the page by modifying an element's event attributeEx: Change
the onsubmit attribute for a form node.

Each DOM node provides a method named removeAttribute which takes a name of an attribute
as a parameter. The removeAttribute method removes the corresponding attribute from the
node. Ex: If aNode is an anchor node in the DOM, aNode.removeAttribute("href")
removes the link from the anchor so that clicking on the HTML element no longer performs an
action.

PARTICIPATION
ACTIVITY 10.2.5: Reading and modifying DOM node attribute values.

Refer to the HTML below.

<!DOCTYPE html>
<html>
 <meta charset="UTF-8">
 <title>Orion mission</title>
 <body>
 <h1>Orion moon mission update.</h1>
 <img src="inFlight.png" id="status" alt="Image of spaceship en route to the
moon">
 </body>
</html>

item-2.

The list item node with the id
item-3.

The ul node with the id list.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 22/49

1) Fill in the missing attribute to make
the image load success.png.

var pic =
document.getElementById("status");
pic._______ = "success.png";

2) Fill in the node and attribute required
to read the current image name.

var pic =
document.getElementById("status");
if (__________ != "success.png")
{
 alert("Wrong picture!");
}

Modifying DOM nodes

The nodeValue property sets or gets the value of text nodes. As the DOM tree represents textual
content separately from HTML elements, the textual content of an HTML element is the �rst
child node of the HTML element's node. So, to access the textual content of an HTML element
within the DOM, .�rstChild.nodeValue is used to access the value of the HTML's element's �rst
child.

Ex:
document.getElementById("saleprice").firstChild.nodeValue = "$25.99":

1. Gets the DOM node for the element with id "saleprice",
2. uses .�rstChild to access the textual content node for the element, and then
3. uses nodeValue to update the content.

The innerHTML property sets or gets a DOM node's content, including all of the node's children,
as a string instead of as a tree. Ex: The innerHTML property of an ordered list element can be
assigned a string containing multiple list items elements using
"first itemsecond itemthird item"

The innerHTML property is not o�cially part of the W3C standardized API, but every browser has
implemented innerHTML for over a decade. Many web developers prefer to modify the DOM
using innerHTML because multiple changes to the DOM can be made with one line of code.

Answer �eld

Check Show answer

Answer �eld

Check Show answer

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 23/49

Additionally, the innerHTML property depends on the internal parser for the web browser, which
is better optimized than manually written DOM API methods.For those reasons, good practice is
to use innerHTML whenever possible.

PARTICIPATION
ACTIVITY 10.2.6: .�rstChild.nodeValue vs. .innerHTML.

Each HTML element has a style object that represents the active CSS styling for the element.
The style object has separate properties for each CSS rule applied to the element. The name of
the style properties are the same as the CSS properties with some minor exceptions. Ex: The
CSS property background-color becomes the JavaScript property backgroundColor.
Setting the style property for a speci�c HTML element in the JavaScript has the same effect as if
the CSS had a selector that matched the same HTML element, which implies that the property
may cascade to lower elements in the DOM tree. Ex:
document.getElementsByTagName("body")[0].style.color = "red" changes the
text color of all HTML elements to red unless an element's text color was explicitly overridden by
another style rule.

PARTICIPATION
ACTIVITY

10.2.7: Using .removeAttribute(), .innerHTML, and .style with DOM
nodes.

Add JavaScript in the changePage function so that clicking on the Use Current
Astronomy button does the following:

1. Uses removeAttribute() to remove the hidden attribute from the paragraph with
the id p2, causing the paragraph to become visible.

2. Uses the .innerHTML property of the span with the id lastPlanet to change the
name of the farthest planet to "Neptune". The quotation marks around Neptune
are necessary.

3. Uses .style.textDecoration to set style attribute of the span text to "underline". The
quotation marks around "underline" are necessary.

Use document.getElementById() to access the DOM nodes.

Animation captions:

1. JavaScript uses the �rstChild.nodeValue to modify the paragraph's contents.
2. JavaScript uses .innerHTML to modify the entire contents of the ordered list. The

argument to .innerHTML speci�es three list itemts to replace the existing contents.

HTML JavaScript

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 24/49

Modifying the DOM structure

Each DOM node object provides methods for changing node locations within the DOM:

The appendChild method appends a DOM node to the child nodes of the method's caller.
The code below moves the �rst ordered list's �rst list item to the last list item of the same
ordered list.
ol = document.getElementsByTagName("ol")[0];
li = ol.getElementsByTagName("li")[0];
ol.appendChild(li);

The insertBefore method inserts a DOM node as a child node before an existing child node
of the method's caller The code below moves the �rst ordered list's fourth list item to the

Render web page Reset code

Your web page

<body>
 <h1>The farthest planet</h1>

 <p id="p1">Pluto was discovered in 1930 and designated as a planet.</p>
 <p id="p2" hidden>In 2006, Pluto was reclassified as a dwarf planet.</p>

 <p>Pluto is the farthest planet from the Sun.<

 <input type="button" value="Use Current Astronomy" onClick="changePage()">
</body>

1
2
3
4
5
6
7
8
9

10
11

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 25/49

�rst list item of the same ordered list.
ol = document.getElementsByTagName("ol")[0];
items = ol.getElementsByTagName("li");
ol.insertBefore(items[0], items[3]);

The removeChild method removes a node from the method's caller's children. The most
common usage pattern is to get a DOM node, n, and call removeChild on n's parent passing
n as a parameter. Ex: n.parentNode.removeChild(n)

PARTICIPATION
ACTIVITY 10.2.8: Adding and removing DOM nodes.

a method on a DOM node which
moves one DOM node to be a
previous sibling to another DOM
node

a method on a DOM node which
deletes a DOM node from the
DOM tree

a method on a DOM node which
turns another DOM node into the
�rst DOM node's last child

The document object provides methods for creating new nodes:

The createElement method creates a DOM node from a string parameter for an HTML
element. Ex: document.createElement("p") creates a new paragraph DOM node.
The createElement method does not add the created DOM node to the DOM tree, so the
programmer must use appendChild or insertBefore to add the new node to the existing
DOM tree. A common error is to forget to add a newly created node to the DOM tree.
The createTextNode method creates a DOM node containing the text speci�ed by a string
argument. Ex: document.createTextNode("new paragraph contents") creates
the text "new paragraph contents", which can be added to the paragraph node created
above. A text node must be added to the DOM using appendChild or insertBefore.

Existing nodes in the DOM can be duplicated using cloneNode.

removeChild appendChild insertBefore

Reset

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 26/49

The cloneNode method creates a DOM node or tree identical to the tree rooted at the
method's caller. The method's boolean argument indicates whether the method should
clone the node's children. Ex: x.cloneNode(true) creates an identical tree as that
rooted at x, and x.cloneNode(false) creates a single node identical to x. The created
tree or node must be added to the DOM using appendChild or insertBefore. A common
error is to forget to modify any id attributes in the cloned tree. The cloneNode method does
not ensure that new nodes have unique id attributes.

PARTICIPATION
ACTIVITY 10.2.9: Creating new DOM nodes.

1) Which method for a DOM node
creates a copy of the node and the
node's children?

2) Which method for the document
object creates a new DOM node for
a speci�c HTML element?

3) Which method for the document
object creates a new DOM node to
hold content?

4) Which method of a DOM node
creates a copy of another DOM
node, but not the node's children?

createElement

createTextNode

cloneNode(true)

cloneNode(false)

createElement

createTextNode

cloneNode(true)

cloneNode(false)

createElement

createTextNode

cloneNode(true)

cloneNode(false)

createElement

createTextNode

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 27/49

Exploring further:

Document Object Model (DOM) from MDN

CHALLENGE
ACTIVITY 10.2.1: Using the Document Object Model.

cloneNode(true)

cloneNode(false)

Start

Assign listNodes with all elements with a class name of 'programming-language'.

2 3 4 5 6

HTML JavaScript

<>Top 10 TIOBE index for June 2017:</> <!-- https://www.tiobe.com/tiobe-index/
<ol class="languages-list">
 <li class="programming-language">Java
 <li class="programming-language">C
 <li class="programming-language">C++
 <li class="programming-language">Python
 <li class="programming-language">C#
 <li class="programming-language">Visual Basic .NET
 <li class="programming-language">JavaScript
 <li class="programming-language">PHP
 <li class="programming-language">Perl
 <li class="programming-language">Assembly Language

1
2
3
4
5
6
7
8
9

10
11
12
13

Check Next

10.3 Event-driven programming

1

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 28/49

An event is an action, usually caused by a user, that the web browser responds to. Ex: A mouse
movement, a key press, or a network response from a web server. Typically, the occurrence and
timing of an event are unpredictable, since the user or web server can perform an action at any
time.

Event-driven programming is a programming style where code runs only in response to various
events. Code that runs in response to an event is called an event handler or event listener.

The web browser supports event-driven programming to simplify handling the many events a
web page must process. When an event happens, the browser calls the event's speci�ed
handlers. The web browser internally implements the code for detecting events and executing
event handlers, thus helping web developers focus on writing the event handlers.

PARTICIPATION
ACTIVITY 10.3.1: Focus and blur event handling.

PARTICIPATION
ACTIVITY 10.3.2: Event-driven programming.

1) The actions a web browser notices
are called handlers.

2) A web developer must implement
the code to detect events and call
the appropriate handlers.

3) A mouse click causes an event.

Animation captions:

1. User clicks in the Name input box. Browser calls the input element's focus event handler,
which changes the element's style. Browser then gives focus to input box.

2. User key presses are sent to Name input box.
3. User clicks the Answer input box. Browser calls the Name element's blur event handler,

then calls the Answer element's focus handler, and then gives focus to the Answer input
box.

4. User key presses are sent to Answer input box.
5. When the user clicks elsewhere, the browser calls the Answer blur event handler.

True

False

True

False

True

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 29/49

Each event is given a name that represents the corresponding action. Ex: The event name for a
mouse movement is mousemove, and the event name for a key press is keypress.

PARTICIPATION
ACTIVITY 10.3.3: Mouse and keyboard events.

Caused by a mouse click.

Caused by mouse entering the
area de�ned by an HTML
element.

Caused by mouse exiting the
area de�ned by an HTML
element.

Caused by mouse moving within
the area de�ned by an HTML
element.

Caused by the user pushing
down a key on keyboard.

Caused by the user releasing a
key on the keyboard.

Caused by the user pressing and
releasing a key on the keyboard.

The following are events for which web developers commonly write handlers.

False

mousemove keydown keyup mouseout keypress click

mouseover

Reset

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 30/49

A change event is caused by an element value being modi�ed. Ex: Selecting an item in a
radio button group causes a change event.
An input event is caused when the value of an input or textarea element is changed.
A load event is caused when the browser completes loading an HTML element, usually the
body.
A DOMContentLoaded event is caused when the HTML �le has been loaded and parsed,
although other related resources such as CSS, JavaScript, and image �les may not yet be
loaded.
A focus event is caused when an element becomes the current receiver of keyboard input.
Ex: Clicking in an input �eld causes a focus event.
A blur event is caused when an element loses focus and the element will no longer receive
future keyboard input.
A submit event is caused when the user submits a form to the web server.

PARTICIPATION
ACTIVITY 10.3.4: Other common browser events.

1) A submit event occurs when any
button is clicked.

2) A blur event occurs when the mouse
is moved over another input
element.

Setting up event handlers

Handlers are written in three ways:

1. Embedding the handler as part of the HTML. Ex:
<button onclick="clickHandler()">Click Me</button> sets the click event
handler for thebutton element by using the onclick attribute. The attribute name used to
register the handler adds the pre�x "on" to the event name. Ex: The attribute for a
mousemove event is onmousemove. Embedding a handler in HTML mixes content and
functionality and thus should be avoided whenever possible.

2. Setting the DOM node event handler property directly using JavaScript. Ex:
document.getElementById("myButton").onclick = clickHandler sets the
click event handler for the element with an id of "myButton" by overwriting the onclick
JavaScript property. Using DOM node properties is better than embedding handlers within

True

False

True

False

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 31/49

the HTML but has the disadvantage that setting the property only allows one handler for
that element to be registered.

3. Using the JavaScript addEventListener() method to register an event handler for a DOM
object. Ex:
document.getElementById("myButton").addEventListener("click", clickHa
registers a click event handler for the element with the id "myButton". Good practice is to
use the addEventListener() method whenever possible, rather than using element
attributes or overwriting JavaScript properties. The addEventListener() method
allows for separation of content and functionality and allows multiple handlers to be
registered with an element for the same event.

Every handler has an optional event object parameter that provides details of the event. Ex: For a
keypress event, the event object indicates which key was pressed, or for a click event, which
element was clicked.

PARTICIPATION
ACTIVITY 10.3.5: Registering event handlers with addEventListener().

In the animation above, the keypressHandler() used event.target to access the text box
object where the keypress event occured. Inside an event handler, the this keyword refers to the
element to which the handler is attached. So event.target and this both refer to the text
box object in the event handler.

PARTICIPATION
ACTIVITY 10.3.6: Registering event handler using addEventListener.

Animation captions:

1. The window's addEventListener() method registers the handler loadedHandler() for the
DOMContentLoaded event.

2. After the rest of the HTML is loaded and parsed, the DOMContentLoaded event occurs,
and loadedHandler() is called.

3. The text box's addEventListener() method registers the handler keypressHandler() for the
keypress event.

4. When the user types the �rst letter, a keypress event occurs, which results in
keypressHandler() being called.

5. The keypressHandler's event object's charCode attribute is the Unicode value of the
pressed key (80 for P).

6. Each keypress causes keypressHandler() to execute. When the user presses Enter,
event.charCode is 13, and the if statement is true.

7. The event object's target attribute is the text box object that caused the keypress event.
An alert dialog displays "Hello, Pam!"

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 32/49

Create and register a JavaScript event handler, myClickHandler, to handle click
events for each element with the hide class attribute. When the click event occurs for
an element, myClickHandler should reveal the hidden text by changing the
style.color of the event.target to "black".

PARTICIPATION
ACTIVITY 10.3.7: Registering event handlers.

Refer to the HTML below.

HTML JavaScript CSS

Render web page Reset code

Your web page Expected web page

<!DOCTYPE html>
<html>
<title>Event Demo</title>
<body>
 <p>
 Challenge your knowledge about event-driven programming by guessing the
 each sentence below. See if you have guessed correctly by revealing the
 </p>

 Event handlers are also known as
 callback functions<
 because the handlers are "called back" when the appropriate event hap

 Event-driven programming allows web pages to react to
 user actions

web server actions<

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 33/49

<body>
 <h1>Calculator</h1>
 <input type="text" id="num1" size="5">

 <input type="text" id="num2" size="5">

 <input type="button" value="Add" id="addBtn">
</body>

1) What event registers
loadedHandler() to be executed
after the HTML has been loaded and
parsed?

window.addEventListener("______",
loadedHandler);

2) What is missing to register the
addNumbers() function as a click
event handler?

function loadedHandler() {
 var addBtn =
document.getElementById("addBtn");

addBtn.addEventListener("click",
_______);
}

3) What code registers an anonymous
function as a click event handler for
the add button?

function loadedHandler() {
 var addBtn =
document.getElementById("addBtn");

addBtn.addEventListener("click",
_______);
}

click

DOMContentLoaded

ready

addNumbers()

addNumbers(1, 2)

addNumbers

function addNumbers() { ... }

function() { ... }

function { ... }

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 34/49

4) The highlightField() function
is an event handler for the
mouseover and mouseout events.
What parameter is
highlightField() missing?

function highlightField(______) {
 if
(event.target.style.background ==
"yellow") {

event.target.style.background =
"white";
 }
 else {

event.target.style.background =
"yellow";
 }
}

5) What parameter is
highlightField() missing to
change the textBox background color
to yellow?

textBox.addEventListener("mouseover",
highlightField);
function highlightField() {
 ____.style.background = "yellow";
}

Capturing, at target, and bubbling phases

When an event occurs, the browser follows a simple DOM traversal process to determine which
handlers are relevant and need to be called. This traversal process follows three phases:
capturing, at target, and bubbling.

1. In the event capturing phase, the browser traverses the DOM tree from the root to the
event target node, at each node calling any event-speci�c handlers that were explicitly
registered for activation during the capturing phase.

event

�eld

color

event.target

event

this

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 35/49

2. In the at target phase, the browser calls all event-speci�c handlers registered on the target
node.

3. In the event bubbling phase, the browser traverses the DOM tree from the event target
node back to the root node, at each node calling all event-speci�c handlers registered for
the bubbling phase on the current node.

The optional third parameter for the addEventListener method indicates whether the handler
is registered for the capturing phase or bubbling phase. If the third parameter is false or not
speci�ed, or if the event handler is registered using any other mechanism, the browser registers
the handler for the event bubbling phase. If the parameter is true, the browser registers the
handler for the capturing phase.

Some events do not bubble, such as blur, focus, and change. When a non-bubbling event occurs,
the browser will follow the event capturing phase, the at target phase, and then stop.

PARTICIPATION
ACTIVITY 10.3.8: Capturing and bubbling.

PARTICIPATION
ACTIVITY 10.3.9: Capturing and bubbling.

Given the HTML and JavaScript below, match the order of alerts to the action
performed by the user.

Animation captions:

1. User moves the mouse cursor over item two in the list. A mouseover event occurs with
the second li node as the target node.

2. Event capturing phase traverses the DOM tree from the root to event target node. No
capturing handlers are registered for the mouseover event.

3. At target phase looks for mouseover event handlers registered on the target node, but no
handlers are registered for the mouseover event.

4. Event bubbling traverses DOM tree from the event node back to the root node. The ol
node's bubbling event handler is called.

5. A mouseout event occurs with the second li node as the target node.
6. Event capturing phase traverses the DOM tree from the root to event target node. The ol

node's mouseout event handler is called.
7. At target phase looks for relevant mouseover event handlers registered on the target

node, but no handlers are registered for the mouseout event.
8. Event bubbling phase looks for any relevant mouseout event handlers by moving up to

the DOM tree, but no elements have mouseout event handlers registered.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 36/49

<div id="div1">
 <div id="div2">
 <div id="div3">
 </div>
 </div>
</div>

var div1 = document.getElementById("div1");
var div2 = document.getElementById("div2");
var div3 = document.getElementById("div3");

div1.addEventListener("click", function(){ alert("Capture 1"); }, true);
div2.addEventListener("click", function(){ alert("Capture 2"); }, true);
div3.addEventListener("click", function(){ alert("Capture 3"); }, true);

div1.addEventListener("click", function(){ alert("Bubble 1"); });
div3.addEventListener("click", function(){ alert("Bubble 3"); });

User clicks on div with div1 id
attribute.

User clicks on div with div2 id
attribute.

User clicks on div with div3 id
attribute.

Preventing default behavior

The event capturing and bubbling process can be stopped by calling the stopPropagation()
method on the event object provided to the handler. Once the stopPropagation is called, the
browser stops the traversal process but still calls relevant registered handlers on the current
node.

A web developer may want to prevent the browser from using a built-in handler for an event. Ex:
Whenever a user clicks a form's submit button, the web browser sends the form data to the web
server. The event object's preventDefault() method stops the web browser from performing the
built-in handler. The built-in handlers that are often prevented are clicking elements, submitting
forms, and moving the mouse into or out of an element.

PARTICIPATION

Capture 1, Bubble 1 Capture 1, Capture 2, Capture 3, Bubble 3, Bubble 1

Capture 1, Capture 2, Bubble 1

Reset

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 37/49

PARTICIPATION
ACTIVITY 10.3.10: Bubbling and capturing.

1) The web browser performs the event
capturing process before the
bubbling process.

2) A web developer cannot prevent the
web browser from performing built-
in handlers.

3) If a web developer creates a "default"
handler for a DOM node high in the
tree and a more speci�c handler for
a DOM node lower in the tree, the
web browser will run both handlers
for an event.

4) Bubbling is the preferred process for
the web browser to �nd appropriate
handlers for an event.

Timers

Some events are related to time instead of user actions. Ex: A website may wish to refresh stock
data at regular intervals to show updated inventory information. Web browsers provide four
methods for handling time-based events:

1. The setTimeout() method takes two arguments: an event handler, and a time delay in
milliseconds (1/1000th of a second) until the timeout occurs. The browser calls the
handler after the timeout has occurred. The setTimeout() method returns a unique
integer identi�er that refers to the timeout that was created. Ex:
var uid = setTimeout(function() { alert("Hello!"); }, 2500); causes
a timeout event to occur after about 2.5 seconds.

True

False

True

False

True

False

True

False

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 38/49

2. The clearTimeout() method takes one argument: a unique identi�er for a timeout that has
been created. If the timeout has not yet occurred, clearTimeout() turns off the
associated timer. Otherwise, clearTimeout() doesn't do anything. Ex:
clearTimeout(uid); stops the timer and causes the timeout event associated with the
uid unique identi�er to not occur.

3. The setInterval() method takes two arguments: a recurring timeout in milliseconds (t), and
a handler. The browser calls the handler every t milliseconds until the recurring timeout has
been canceled. A recurring timeout is also called an interval. The setInterval()
method returns a unique integer identi�er that refers to the recurring timeout that was
created.

4. The clearInterval() method takes one argument: a unique identi�er for an interval that has
been created. After a call to clearInterval(), no further calls to the associated handler
will be made.

PARTICIPATION
ACTIVITY 10.3.11: Timeouts.

1) setInterval() and
setTimeout() both return
identi�ers for their associated
handlers.

2) Since clearInterval() and
clearTimeout() take an identi�er
as a parameter, the methods can be
used interchangeably.

3) The following two JavaScript
fragments are functionally
equivalent.
setTimeout(function() {
alert("Hello!"); }, 2500);

function hello() {
 alert("Hello!");
}
setTimeout(hello, 2500);

PARTICIPATION

True

False

True

False

True

False

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 39/49

PARTICIPATION

ACTIVITY 10.3.12: Interval event handler.

Modify the JavaScript to create a countdown timer.

1. Add code to startbutton's click event handler to start a recurring timeout that
will call the countdown() function every second.

2. Store the unique identi�er returned by setInterval() so the recurring timeout
events can be canceled.

3. Add code to countdown() function to clear the countdown recurring timeout.
4. Add code to stopbutton's click event handler to clear the countdown recurring

timeout.

HTML JavaScript

Render web page Reset code

<!DOCTYPE html>
<html>
<body>
 <p>Enter the countdown starting number, then click the start button.</p>
 <input type="number" id="number" min="0" value="5">
 <input type="button" id="startbutton" value="start">
 <input type="button" id="stopbutton" value="stop" disabled>
</body>
</html>

1
2
3
4
5
6
7
8
9

10

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 40/49

CHALLENGE
ACTIVITY 10.3.1: Event-driven programming.

Your web page Expected web page

Start

Register the updateCount event handler to handle input changes for the textarea tag.
Note: The function counts the number of characters in the textarea.

2 3 4

HTML JavaScript

<label for="userName">User name:</label>
<textarea id="userName" cols="40" rows="3"></textarea>

<p id="stringLength">0</p>

1
2
3
4

1

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 41/49

Exploring further:

Event reference from MDN

EventTarget.addEventListener() from MDN

Event �ow tutorial from Java2s

JavaScript timers from MDN

 Check Next

10.4 Form validation
Since data integrity is essential to most applications, many web forms require speci�c formats
for users to enter data. Ex: A credit card must contain 16 digits, a date cannot have a �fteenth
month, and only 50 valid names of states exist for the United States of America. While a web
server must check that the submitted data is valid, a better user experience occurs when the
web client also performs the same checks before posting. Any invalid data on the client can be
immediately noticed and �agged as needing modi�cations without waiting for the server to
respond. Validation can either be done as the user enters data in the form by adding a JavaScript
function as the change handler for the appropriate �eld, or immediately prior to submitting the
entire form by adding a function as the form's submit.

PARTICIPATION
ACTIVITY 10.4.1: Validating form input.

Animation captions:

1. The web page uses JavaScript to validate the web form.
2. User enters invalid form data and does not check the checkbox.
3. User clicks the submit button. The browsers executes code to validate the form input,

and highlights invalid �elds in red.
4. User must correct the form data before submitting the form data to the web server. After

the user clicks the submit button again, the browser updates the page to re�ect that all
data is valid.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
http://www.java2s.com/Tutorials/Javascript/DOM_Event/Event_Flow_capture_target_and_bubbling_in_Javascript.htm
https://developer.mozilla.org/en-US/Add-ons/Code_snippets/Timers

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 42/49

Each textual input element in an HTML document has a value attribute that is associated with
the user-entered text. The value attribute can be used to validate user-entered text by checking
desired properties, such as:

Checking for a speci�c length using the length property on the value attribute
Checking if entered text is a speci�c value using ===
Checking is the text contains a speci�c value using the string indexOf() method on the
value attribute
Checking that text matches a desired pattern using a regular expression and the string
match() method

Drop-down menus also have a value attribute that is associated with the user-selected menu
option .

Checkboxes and radio buttons have a checked attribute that is a boolean value indicating
whether the user has chosen a particular checkbox or radio button. The checked attribute can be
used to ensure an input element is either checked or unchecked before form submission. Ex:
Agreeing to a website's terms of service.

PARTICIPATION
ACTIVITY 10.4.2: Identify why the �eld is invalid.

1) Enter 5-digit ZIP code:

2) Enter 5-digit ZIP code:
103

3) Enter 5-digit ZIP code:
31M4N

ZIP

Some input characters are not
digits.

The input �eld is empty.

The input is too long.

Some input characters are not
digits.

The input �eld is empty.

The input length is incorrect.

Some input characters are not
digits.

The input �eld is empty.

The input length is incorrect.

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 43/49

Validating form data upon submission

Validating form data using JavaScript that executes when the user submits the form can be
performed by:

1. Register a handler for the form's submit event that executes a validation function.
2. Within the validation function, inspect the form's input �elds via the appropriate DOM

elements and element attributes.
3. If the form is invalid, call the preventDefault() method on the event to cancel the form

submission and prevent the form data from being sent to the server.

Figure 10.4.1: Ensuring a checkbox is selected before the form is
submitted.

<!DOCTYPE html>
<html>
<meta charset="UTF-8">
<title>Terms of Service</title>
<script src="validate.js" defer></script>
<body>
 <form id="tosForm" action="https://example.com" target="_blank" method="POST">
 <label for="tos">I agree to the terms of service:</label>
 <input type="checkbox" id="tos">

 <input type="submit">
 </form>
</body>
</html>

function checkForm(event) {
 var tosWidget = document.querySelector("#tos");

 // Cancel form submission if tos not checked
 if (!tosWidget.checked) {
 event.preventDefault();
 }
}

var formWidget = document.querySelector("#tosForm");
formWidget.addEventListener("submit", checkForm);

PARTICIPATION
ACTIVITY 10.4.3: Practice validating form prior to submission.

Complete the JavaScript validateForm() function so that validateForm() sets
the input style.backgroundColor to LightGreen for each �eld that passes the
validation check and sets the input �eld's style.backgroundColor to Orange if the
validation fails.

Validation rules:

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 44/49

The screen name �eld must not be empty.
The ZIP code �eld must be of length 5.
The TOS �eld must contain "yes".

Validating each �eld as data is entered

Alternatively, form data can be validated as the user enters data in the form by:

1. For each �eld that should be validated:

HTML CSS JavaScript

Render web page Reset code

Your web page Expected web page

<!DOCTYPE html>
<html>
<meta charset="UTF-8">
<title>Terms of Service</title>
<body>
 <form id="myForm">
 <label for="screenName">Screen name:</label>
 <input type="text" id="screenName" name="screenName" placeholder="Screen
 <label for="zip">ZIP code:</label>
 <input type="text" id="zip" name="zip" placeholder="5-digit ZIP code">
 <label for="tos">Type yes if you agree to the terms of service:</label>
 <input type="text" name="agreement" id="tos">
 <input type="button" id="validate" value="Validate Form">
 </form>
</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 45/49

a. Register an input event handler for the �eld.
b. Create a global variable to track whether the �eld is currently valid. In most cases,

this global variable should be initialized to false since the form typically starts with
the �eld as invalid.

c. Modify the global variable as appropriate within the �eld's event handler.
2. Register a submit event handler for the form that veri�es the global variables for each �eld

are true.
3. If one or more of the global variables are false, call the preventDefault() method on

the event to cancel the form submission and keep the form from being sent to the server.

Note

The JavaScript function isNaN(num) returns true if the parameter, num, is not a
number. Mozilla's isNaN provides a comprehensive discussion of how to determine
whether a value represents a JavaScript number.

Figure 10.4.2: Checking a ZIP code �eld as the user updates the �eld.

<!DOCTYPE html>
<html>
<meta charset="UTF-8">
<title>Terms of Service</title>
<script src="validate.js" defer></script>
<body>
 <form id="tosForm">
 <input type="text" id="zipcode">
 <input type="submit">
 </form>
</body>
</html>

var zipcodeValid = false;
var zipcodeWidget = document.querySelector("#zipcode");
zipcodeWidget.addEventListener("input", checkZipcode);

function checkZipcode() {
 var val = zipcodeWidget.value;
 zipcodeValid = val.length == 5 && !isNaN(parseInt(val, 10));
}

var formWidget = document.querySelector("#tosForm");
formWidget.addEventListener("submit", checkForm);

function checkForm(event) {
 if (!zipcodeValid) {
 event.preventDefault();
 }
}

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/isNaN

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 46/49

PARTICIPATION
ACTIVITY 10.4.4: Using JavaScript to validate input �elds.

1) What does the validation function
return for checkGrade("-5")?

function checkGrade(grade) {
 return grade.length > 0 &&
!isNaN(grade);
}

2) What does the validation function
return for checkGrade("95.3")?

function checkGrade(grade) {
 return !isNaN(grade) &&
 grade >= 0 && grade <= 10;
}

3) What does the validation function
return for
checkTemperature("-40")?

function checkTemperature(temp) {
 return temp.length > 0 &&
!isNaN(temp) &&
 temp >= 0 && temp <= 1000;
}

4) What does the validation function
return for
checkTemperature(" ")?

function checkTemperature(temp) {
 return temp.length > 0 &&
!isNaN(temp) &&
 temp >= 0 && temp <= 1000;
}

true

false

null

true

false

true

false

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 47/49

Using HTML5 form validation

HTML5 form elements enable the browser to do form validation automatically, which reduces
the need for JavaScript validation.

Note

A browser that does not support a particular HTML5 input element will transform
that element into a text input, which then requires JavaScript to validate the form
data.

HTML5 provides customized input elements that can only contain valid values, such as date or
color. Customized elements are automatically checked by the browser and/or �lled in by a pop-
up input picker in the browser, ensuring the submitted value matches a common speci�cation.
HTML5 also provides attributes that allow the browser to do validation without using JavaScript
(Ex: required, max, pattern, etc.). HTML5 form validation attributes include:

The required attribute indicates that the �eld must have a value (text or selection) prior to
submitting the form.
The max and min attributes indicate the maximum and minimum values respectively that
can be entered in an input �eld with ranges, such as a date or number.
The maxlength and minlength attributes indicate the maximum and minimum length of
input allowed by an input �eld.
The pattern attribute provides a regular expression that valid input must match.
The title attribute can be used to provide a description of valid input when using the pattern
attribute.

Figure 10.4.3: Using HTML5 form validation.

<form>
 <input type="range" name="age" min="5" max="120">
 <input type="checkbox" name="agree" required>
 <input type="password" name="password" minlength="10" maxlength="16">
 <input type="text" name="credit" pattern="^\d{16}$" title="exactly 16 digits">
 <input type="submit">
</form>

true

false

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 48/49

HTML5 forms provide pseudo-classes to help CSS styling of forms. The following are four
examples of HTML5 pseudo-classes:

1. The :valid pseudo-class is active on an element when the element meets all the stated
requirements in �eld attributes.

2. The :invalid pseudo-class is active on an element when one or more of the attributes in the
�eld are not fully met.

3. The :required pseudo-class is active on an element if the element has the required
attribute set.

4. The :optional pseudo-class is active on an element if the element does not have the
required attribute set.

PARTICIPATION
ACTIVITY 10.4.5: Form validation questions.

1) If all the �elds in a form have been
validated before submitting the form
data to a server, does the server
need to repeat the �eld validation?

2) Is validating input �elds as the user
�lls in each �eld better than
validating the entire form after all the
form data has been entered?

3) If validation shows that a form input
value is invalid, should the input
value be reset to the initial value?

4) If most browsers support HTML5,
can web developers do all form data
validation using HTML5 input
element attributes and not use
JavaScript validation?

Yes

No

Yes

No

Yes

No

Yes

No

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

6/2/2019 CIS 273: Web Design and Development home

https://learn.zybooks.com/zybook/StrayerCIS273Spring2019/chapter/10/print 49/49

Exploring further:

Data form validation from MDN

CHALLENGE
ACTIVITY 10.4.1: Form validation.

Start

Use the checkSubmittedForm function to validate the form when the user clicks
"submit".

2 3 4

HTML JavaScript

<form id="ageForm" action="https://learn.zybooks.com" method="POST">
 <label for="userAge">Age:</label>
 <input type="number" id="userAge">

 <input type="submit" id="submitForm">
</form>

1
2
3
4
5

Check Next

1

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

©zyBooks 06/02/19 18:13 473675
Irving Jimenez

StrayerCIS273Spring2019

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms/Data_form_validation

