ECM501 Teaching the Curriculum: Junior Secondary Science

Credit Points:	10	Mode:	Internal/External delivery
Assumed Knowledge:	NA	Location:	Casuarina Campus /Learnline
Pre-Requisite(S):	NA	Learning Method:	Face to Face /OLR
Year:	2021	Unit Coordinator:	Dr Muhammad Nawaz
Semester:	One/Two	Phone:	(08) 8946 6277
College:	Education	Email:	muhammad.nawaz@cdu.edu.au

Please see your learnline unit for the lecturer's contact details

UNIT DESCRIPTION

In this postgraduate unit, pre-service teachers will develop in-depth specialised pedagogical knowledge and skills to demonstrate an understanding of the complexities of student learning in junior secondary science. Pre-service teachers will review the contemporary science educational theories and literature to think critically and challenge their own and peers' existing knowledges of the concepts and processes of teaching and learning of junior secondary science using the Australian Curriculum in Science throughout this unit.

LEARNING OUTCOMES

On successful completion of this unit students should be able to:

- 1. Synthesise complex interrelationships in pedagogical content knowledge in the design and implementation of engaging learning experiences in junior secondary science classrooms.
- 2. Implement and analyse Indigenous knowledge across a range of real-world contexts in science teaching and learning in junior secondary.
- 3. Critically analyse a range of creative and challenging scientific inquiry approaches in teaching and learning.
- 4. Analyse and theorise the dynamic and interconnected nature of real-world problems through engagement in research literature and evaluation of students' science learning experience.
- 5. Articulate and implement safe working practices in science activities in and out of the classroom.

TEACHING AND LEARNING STRATEGIES

Learning and teaching will include individual and collaborative activities to enhance the synthesis of the complex interrelationships within the pedagogical content knowledge of junior secondary science education. Learnline modules provide the learning materials to challenge current understanding of teaching and learning in science and its relationship to scientific inquiry, and science as a human endeavour. Activities within the learning materials provide specific activities along with exemplars, graphics, visualisations and Collaborate sessions.

The unit presents opportunities to analyse and critique Australian Curriculum: Science documents individually and as a group. Pre-service teachers will use creative and challenging inquiry methodologies to ensure a relational understanding of real world problems and local contexts are constructed for classroom practice. They will also identify and use of relevant digital resources to explore the dynamic and interconnected nature of learning in science. Access to all unit learning and teaching activities will be available through Learnline.

PARTICIPATION

This unit requires approximately 12.5 hours (based on Units and Course Policy, pol-057) of commitment per week over the 12-week semester with an expectation of interaction with peers using Learnline. This forms an important means of developing their professional language and reflecting one's own and the work of others. In line with professional practice, collaborative learning is encouraged. Aside from personal matters, student-to-lecturer communication will occur within a broader collaborative context where student-to student communication predominates. Lecturer input to this context is expected to be advisory, with students taking the initiative and developing their skills in leadership, problem solving, and consensus building. Specific details of individual class times can be obtained by accessing the class timetable at: http://www.cdu.edu.au/timetable

LEARNLINE

Learnline will be used to provide information about study requirements including detailed assessment information, to post announcements about the unit and to distribute learning materials. Assignments will be downloaded into Learnline and students will access feedback from tasks and grades. Students will also be provided with opportunities to communicate with their tutors and peers on discussion boards. Learnline provides a place where students can contribute to discussions on important issues relating to the unit especially assessment tasks.

Academics will:

- 1. Provide information about study requirements, including detailed information about assessment
- 2. Post announcements about the unit
- 3. Provide feedback on student tasks and grades for assessable work
- 4. Contribute to discussions, including those about assessment, and to interact with students in the unit.
- 5. Arrange 'real time' seminars/classes

Pre-Service teachers will:

- 1. Post to forums
- 2. Submit assessment tasks
- 3. Provide feedback on the posts of others
- 4. Receive and send email
- 5. Download/upload multimedia
- 6. Access Learnline to interact with lecturers and other students
- 7. Participate in real time seminars/classes

ADDITIONAL EDUCATIONAL RESOURCES

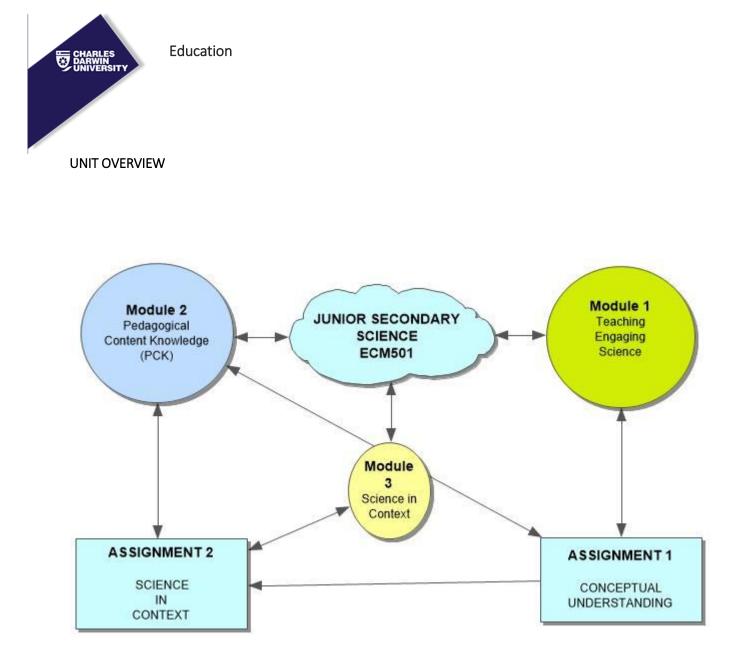
MARK REVIEWED BUTTON

The mark reviewed button is an important feature of most Education units. Because it allows students access to the next section of the learning material, for example you will need to review the plagiarism declaration before you can gain access to your assignments. New content will be

released once the 'mark reviewed button has been selected.

INCORPORATING INDIGENOUS KNOWLEDGES

The School of Education is committed to incorporating localised and national contemporary Indigenous Knowledges into all units and course programs. In this unit students will develop their current understandings of Indigenous Knowledge as it relates to the education sector. Course content delivered to students will acknowledge the diversity of Indigenous people's cultures and knowledges. This unit acknowledges that Indigenous perspectives are *ways of knowing, being and doing,* that is based in technology, the land and the culture articulated by Aikenhead and Ogawa (2007) where they suggest that these perspectives highlighted by:


Knowledge and the knower are connected, Journey: coming to know, Place-based, Verb rich, process and action orientated, Inter-related, Specialised: understanding the interconnections.

Pre-service teachers will be provided opportunities to explore Indigenous perspectives and pedagogies from Indigenous teachers and academics and apply these theoretical concepts to their own teaching practices.

INSCHOOL (PLACEMENT INFORMATION)

Students completing units that require placement should visit the Inschool site <u>http://inschool.cdu.edu.au</u> for placement information. This includes calendars of dates, requirements for the placement and assessment forms to be returned at the completion of the placement.

Note that assessment forms are returned to the placement office (<u>http://inschool.cdu.edu.au</u>) and are not uploaded to Learnline

LEARNING SCHEDULE

Module 1 : Teaching	Module 1 : Teaching Engaging Science				
Estimated time frame	Торіс	Tutorial activities	Student Preparation/content	Unit LO & AITSL,	
1-4	Topic 1.1: Science in the Jnr Secondary curriculum	Activity 1.1.1: Quality of teaching and Learning in Science An investigation of the relationship between pedagogical content knowledge as a frame for teacher quality	Pedagogical Content knowledge: as a conceptual tool for teachers as professionals: Is it important?	as a LO:1,2,3,4,5 APST: 1.2,2.1,2.2 2.3, 2.4, 2.6, 3.2,4.1,4.2, 4.4,4.5,5.1,5.2,5.3,6.1,	
	Topic 1.2: Australian Curriculum	Activity 1.2.1: Science as understanding: making meaning of discipline content. Activity 1.2.2: Science as Inquiry: Meanings of the nature of science and its impact on classroom practice. Activity 1.2.3: Science as a Human Endeavour: what it means to teaching science in and about the universe.	Australian Curriculum Science, V 8.3 (ACARA, 2015)	7.2	

	Topic 1.3: Indigenous perspectives	Activity 1.3.1 Official knowledge and re-conceptualisation An investigation to answer the question: Is Indigenous perspectives relevant to the science classroom?	Scientific and Cultural knowledge Knowing being and doing	
	Topic 1.4: Duty of Care	Activity 1.4.1 Risk Assessment: understanding the place of 'loco parentis' in science	State and Territory risk management in curriculum activities and Occupational Health and Safety manuals and procedures.	
	In addition to discussion board tasks, each module has a critical task that provides opportunities for making judgements about learning progression. Critical Task 1:			
	Pedagogical content knowledge provides a frame for developing quality science teaching practice.			
	The task requires you to reflect on the model of pedagogical content knowledge and your understanding of the curriculum descriptors you have developed through Module 1. This reflection will present the gaps in your knowledge and suggestions for addressing the gaps. Your reflection and action plan for addressing the gaps will be presented by you on-line. Then, groups will be formed to provide support for your 'gap closing'.			
Module 2: Pedagogic	al Content Knowledge			
Estimated time frame	Торіс	Tutorial activities	Student Preparation/content	Unit LO & APST,

5-09	Topic 2.1: Chemical Sciences	Activity 2.1.1: Scope and Sequence: structure and organisation of chemistry curriculum	Australian Curriculum Science, V 8.3 (ACARA, 2015)	LO:1,2,3,4,5 APST: 1.2,2.1,2.2 2.3, 2.4, 2.6,
		Activity 2.1.2: Alternative conceptions and conceptual change learning and assessment strategies.	NSDL Science literacy maps: Matter, change, energy Models in Chemistry: Macroscopic to sub- microscopic, Data handling, Analogies in chemistry, models and explanations	3.2,4.1,4.2, 4.4,4.5,5.1,5.2,5.3,6.1, 7.2
		Activity 2.1.3: Engaging students: planning, sequences and pedagogical approaches in chemical science to challenge student alternative conceptions	Concept cartoons 5Es Teaching and Learning Model (Academy of Science) Extending and refining Knowledge (Mazarno & Pickering, 2006) Learning objects: ICT representations Data Logging	
	Topic 2.2: Biological Sciences	Activity 2.2.1: Scope and Sequence: structure and organisation of biology curriculum	Australian Curriculum Science, V 8.3 (ACARA, 2015)	
		Activity 2.2.2: Alternative conceptions and conceptual change in the biology classroom.	NSDL Science literacy maps: Systems, living things, relationships Role-play	

	1	
	Activity 2.2.3: Engaging students:	Sustainability: Australian Curriculum
	planning, sequences and	Science (ACARA, 2012)
	pedagogical approaches in	Using Knowledge meaningfully (Mazarno
	chemical science to challenge	& Pickering, 2006)
	student alternative conceptions	Blooms Taxonomy
		Patterns, order and organisation
		Form and Function
	Activity 2.2.4: Indigenous	Indigenous weather and seasons
	perspectives: investigation of the	Knowledge (Bureau of Meteorology)
	place of Indigenous knowledge in	
	Biology	
Topic 2.3: Physical Sciences	Activity 2.3.1: Scope and	Australian Curriculum Science, V 8.3
	Sequence: structure and	(ACARA, 2015)
	organisation of physics curriculum	
	Activity 2.3.2: Alternative	NSDL Science literacy maps
	conceptions and conceptual	Force, energy, electricity
	change learning and assessment	Data logging
	in the physics classroom.	
	Activity 2.3.3: Problem based	Concept cartoons
	learning and numeracy: strategies	Problem-based learning
	and pedagogical approaches for	Science inquiry
	classroom engagement	

	Activity 2.3.4: Indigenous perspectives: changes and transformations	Indigenous peoples and their knowledge in Science
Topic 2.4: Earth & Space Science	Activity 2.4.1: Scope and Sequence: structure and organisation of earth & space science curriculum	Australian Curriculum Science, V 8.3 (ACARA, 2015)
	Activity 2.4.2: Alternative conceptions and conceptual change learning and assessment in the E & SS classroom	NSDL Science literacy maps Concept Maps Models of process Scale and Measurement
	Activity 2.4.3: Problem based learning and numeracy: strategies and pedagogical approaches for classroom engagement	5Es Teaching and Learning Model: backward mapping Extending and refining Knowledge (Mazarno & Pickering, 2006) Learning Objects: ICT representations
	Activity 2.4.4: Indigenous perspectives: changes and transformations	Australian Aboriginal Astronomy (CSIRO) Indigenous Weather Knowledge (Bureau of Meteorology)
		s, each module has a critical task that udgements about learning progression.

		Firstly this task is a follow-on from the first critical task in that you are required to report your progress on achieve your 'gap goal'. Then, you are required to reflect on the discipline knowledge and strategies of Module 2. This reflection will again present gaps in your knowledge and provide opportunities for addressing the gaps. Your reflection and action plan for addressing the gaps will be presented by you on-line. Then, groups will be formed to provide support for your 'gap closing'. They may not be the same groups as before, as the peer experts might be different. You again will be collaborating with your peers to develop your understanding of the content and strategies you will need as a science teacher.		
Module 3: Science in Estimated time frame	Topic	Tutorial activities	Student Preparation/content	Unit LO & APST
10-12	Topic 3.1: Local Place contexts	Activity 3.1.1: Big Issues of the future: bringing classroom science into a world of problem solving. Activity 3.2.1: Issues from my local area: bringing the world into science classroom problem solving.	Key ideas of Science: Patterns, order and organisation, Form and Function, Stability and change, Systems Matter and Energy and Scale and measurement	LO:1,2,3,4,5 APST: 1.2,2.1,2.2 2.3, 2.4, 2.6, 3.2,4.1,4.2, 4.4,4.5,5.1,5.2,5.3,6.1, 7.2
	Topic 3.2: What about mathematics?	Activity 3.2.1: Mapping the mathematics for Junior Science: making meaning of the	Australian Curriculum Mathematics V8.3 (ACARA,2015)	

In addition to discussion board tasks, each module has a critical task that provides opportunities for making judgements about learning progression.

Critical Task 3:

This is the final task where you will present to your peers an on-line a visualization the represents your professional learning journey of addressing your identified gaps in knowledge and understanding.

	relationships between maths and	
	science.	

READINGS

Topic 1	Tutorial activities	Readings
Topic 1.1: Science in the Jnr	Activity 1.1.1: Quality of teaching	Students' ease in Crossing Cultural Borders into School Science (Aikenhead, 2001).
Secondary curriculum	and Learning in Science	Re-Imagining Science Education: Engaging students in science for Australia's Future (Tytler, 2007)
		Park, S. and Oliver, J. (2008), Revisiting the Conceptualization of Pedagogical Content
		Knowledge: PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38: 261-284.
		Berry, A., Loughran J., and Van Driel, J. (2008), Revisiting the Roots of pedagogical Content Knowledge. International Journal of Science Education, 30(10), 1271-1279.
		Van Driel, J., and Berry, A. (2012). Teacher Professional Development focusing on Pedagogical Content Knowledge. Educational Researcher, 41(1), 26-28

Topic 1.2: Australian Curriculum	Activity 1.2.1: Science as understanding Activity 1.2.2: Science as Inquiry Activity 1.2.3: Science as a Human Endeavour	Australian Curriculum Mathematics V8.3 (ACARA,2015) Science by Doing (Australian Academy of Science) Science by Doing: Doing Science Investigations: teacher guide, Science by Doing: Doing Science Investigations: student guide, Science by Doing: Do it yourself (DIY)-adapting science lessons to an inquiry-based approach: teacher guide.
Topic 1.3: Indigenous perspectives	Activity 1.3.1 Official knowledge and reconceptualisation	Gondwe, M and Longnecker, N. (2015). Scientific and Cultural Knowledge in Intercultural Science Education: Student Perceptions of Common Ground. Research in Science Education, 45(1): 117-147.
Topic 1.4: Duty of Care	Activity 1.4.1 Risk Assessment	State and Territory risk management in curriculum activities and Occupational Health and Safety manuals and procedures.
Topic 2	Tutorial activities	Readings
Topic 2.1: Chemical Sciences	Activity 2.1.1: Scope and Sequence	Australian Curriculum Science, V 8.3 (ACARA, 2015)
	Activity 2.1.2: Alternative conceptions and conceptual change learning and assessment	NSDL Science literacy maps Models in Chemistry: <u>https://www.rsc.org/cpd/resource/RES00001448/developing-and-using-models</u>
	Activity 2.1.3: Engaging students:	5Es Teaching and Learning Model: Science by Doing (Australian Academy of Science)

		Pedagogical approaches technology-integrated science teaching
		Data Logging: The use of data logging in teaching chemistry and physics (Kennedy, 2000)
Topic 2.2: Biological Sciences	Activity 2.2.1: Scope and Sequence	Australian Curriculum Science, V 8.3 (ACARA, 2015)
	Activity 2.2.2: Alternative conceptions and conceptual change learning and assessment	NSDL Science literacy maps Role-play: Role-playing as a creative method in science education (Craciun, 2010)
	Activity 2.2.3: Engaging students: planning and sequences	Sustainability: Australian Curriculum Science (ACARA, 2012) Using Knowledge meaningfully (Mazarno & Pickering, 2006)
		Blooms Taxonomy: Biology in Bloom: Implementing Bloom's Taxonomy to enhance Students Learning in Biology (Crowe et al., 2008).
	Activity 2.2.4: Indigenous perspectives	Indigenous weather and seasons Knowledge (Bureau of Meteorology) Indigenous Science Network
Topic 2.3: Physical Sciences	Activity 2.3.1: Scope and Sequence	Australian Curriculum Science, V 8.3 (ACARA, 2015)
	Activity 2.3.2: Alternative conceptions and conceptual change learning and assessment	NSDL Science literacy maps Inside the black box: Raising Standards through classroom assessment (Black and William, 2001)
	Activity 2.3.3: Problem based learning and numeracy	Concept cartoons: Concept Cartoons in Science Education (Naylor & Keogh, 2000) Problem-based learning: Problem based learning and the nature of science (Moutinho et al, 2015) Science inquiry: Science by Doing (Australian Academy of Science)

	Activity 2.3.4: Indigenous perspectives: changes and transformations	Hogue, M. (2016) Aboriginal Ways of Knowing and Learning, 21st Century Learners, and STEM Success.
Topic 2.4: Earth & Space	Activity 2.4.1: Scope and Sequence	Australian Curriculum Science, V 8.3 (ACARA, 2015)
Science	Activity 2.4.2: Alternative conceptions and conceptual change learning and assessment	NSDL Science literacy maps Concept Maps: Concept mapping: A useful tool for science education (Novak, 1990). Models of process: Models and Modelling in Science Learning (Rapp and Sengupta, 2010) Science years 7-10 Assessment Strategies: NSW Department of Education
	Activity 2.4.3: Problem based learning and numeracy	5Es Teaching and Learning Model: backward mapping Extending and refining Knowledge: Mazarno & Pickering, 2006 Learning Objects: ICT representations
	Activity 2.4.4: Indigenous perspectives: changes and transformations	Australian Aboriginal Astronomy (CSIRO) Indigenous Weather Knowledge (Bureau of Meteorology)
Topic 3	Tutorial activities	Student Preparation
Topic 3.1: Local Place contexts	Activity 3.1.1: Big Issues of the future Activity 3.2.1:Issues from my local area	Key ideas of Science: Australian Curriculum Science, V 8.3 (ACARA, 2015)

Topic 3.2: What about	Activity 3.2.1: Mapping the	Australian Curriculum Mathematics V8.3 (ACARA, 2015)
mathematics?	mathematics for Junior Science	

ASSESSMENTS

Assignment 1				
Title	Conceptual Understanding			
Value	50 %			
Week Due	Week 6			
Length	2000 words or equivalent			
Learning Outcomes	1,2,3; APST: 1.2, 2.1, 2.6, 3.2, 3.3, 3.4, 4.1, 4.4			

Task Description

This assignment requires you to demonstrate research, technical and creative skills to design four science investigative activities. The four activities will be based on your research of student alternative conceptions in science relating to the sub-strands: Chemical, Biological, Physical and Earth/Space science of the Australian Curriculum. This means: one alternative conception and activity per sub-strand. These are not lesson plans.

The activities you create will demonstrate the synthesis of complex relationship between student alternative conceptions, student engagement and investigation theories in science education. This is best done by assuming students hold a particular alternative conception and your activity will through the results of the investigation challenge the particular alternative conception.

These investigative activities will use *working scientifically* protocol relevant to your State or Territory.

PART B:

After you have created your activities, you must demonstrate your technical and communicative skills to implement, analyse, evaluate and theorise the effectiveness of **one** investigation. This might be conducted with students, family, and friends or by yourself.

You will need to:

- Present a theoretical justification context that frames the investigation relevant to the student cohort,
- State the target level(s) of the students you are designing for;
- Identify the science and mathematics sub-strands and content descriptions you are using;
- Identify the appropriately referenced student alternative conceptions;
- Present the activities using the *working scientifically*;
- Present a risk assessment for the activity you perform,
- Demonstrate of conducting one activity,

ECM501 Junior secondary science

• Use feedback and observations from the *performed* investigation to critically reflect place of student alternative conceptions as a focus for student engagement in the science investigative classroom.

ASSIGNMENT 1 ECM501 GRADING CRITERIA

	HD	D	С	Р	F
	100-85	84-75	74-65	64-50	<50
	Context or narrative	Context or narrative	Context or narrative	Context or narrative ideas	Context or narrative ideas
	demonstrate highly	demonstrate creative	demonstrate ideas,	are present.	are absent.
	creative ideas, stated in	ideas, stated in effective,	stated in effective	Relevance of student	Relevance is not
Context or	effective, sharp language	sharp language	language	alternative conception is	established for the
narrative to	Relevance of student	Relevance of student	Relevance of student	established for the	student activities.
frame the	alternative conceptions is	alternative conceptions is	alternative conception is	student activities.	No evidence of
investigations	established and	established through the	established for the	Some evidence of	structured argument for
relevant to the	supported in detail from	literature for the student	student activities with	structured argument for	relevance and
student levels	the literature for the	activities.	some literature.	relevance and	engagement;
	student activities.	A developed structured	Evidence of structured	engagement;	No development of
	highly developed	argument for relevance	argument for relevance	Some development of	implications for student
	structured argument for	and engagement;	and engagement;	implications for student	engagement
	relevance and	A development of	evidence of the	engagement	
	engagement;	implications for student	development of		
	fully developed	engagement	implications for student		
	implications for student		engagement		
	engagement				
Identify the	Scien	Science and Mathematics Strands/domains are identified correctly.			
strands/domains		Outcomes ar	e appropriate		identified incorrectly.
and outcomes					Outcomes are
					inappropriate

ECM501 Junior secondary science

				provided/implied	not evident.
issues.				management issues are	management issues are
management				safety/student	safety/student
Safety/student	A detailed account of safety	//student management issue	es are provided	Accounts of	An account of
	understandings.				
	challenge their	understandings.		understandings.	
	motivate student to	challenge their		challenge student	
	stimulate interest and	motivate student to	understandings.	has some potential to	
	has the potential to	stimulate interest and	challenge student	Presentation of activities	understandings.
	Presentation of activities	has the potential to	has the potential to		challenge student
	and the stated activities.	Presentation of activities	Presentation of activities	tenuous/implied.	has little potential to
	alternative conceptions	and the stated activities.	and the stated activities.	but some links are	Presentation of activities
	prior learning, student	alternative conceptions	alternative conceptions	and the stated activities,	
	connections made to	prior learning, student	between student	alternative conceptions	and the stated activities
	Highly developed	Connections are made to	Connections are made	between student	alternative conceptions
students				Connections are made	made between student
and engaging	the stated activities.	stated activities.	stated activities.		Connections are not
conceptions	are creatively used for	are appropriate for the	appropriate for the	activities.	
Alternative	articulated, complete and	articulated, complete and	articulated and are	stated/implied for the	stated for the activities.
	engagement are clearly	engagement are	engagement are	engagement are	engagement are not
	concepts of student	concepts of student	concepts of student	concepts of student	concepts of student
	Student alternative conceptions and	Student alternative conceptions and	Student alternative conceptions and	Student alternative conceptions and	Student alternative conceptions and

Demonstration	Evidence of conducting on	e activity is appropriate.	Evidence of conducting on	e activity is appropriate.	No Evidence of
of conducting	Critique of problems is appropriate, with a detailed		Critique of problems is appropriate, with an		conducting one activity.
one activity	evaluation of the conceptu	al challenge.	evaluation of the conceptu	al challenge.	lacking detail Critique of
					problems
Critical reflection	Comprehensive,	Comprehensive and valid	Mostly valid reasoning	Some valid reasoning	Invalid or no reasoning
Analysis	insightful and valid	reasoning.	Credible aspects are	Few aspects presented in	Aspects of approach are
synthesis	reasoning.	Aspects presented in	presented in appropriate	appropriate depth.	minimally presented
Interpretation	All aspects presented	depth	depth	Significance, strengths	Significance, strengths
justification	in depth and with strong	Significance, strengths	Significance, strengths	and weaknesses partially	and weaknesses
	insight	and weaknesses	and weaknesses are	addressed	minimally
	Significance, strengths	comprehensively	present.	Some challenges clearly	addressed
	and weaknesses are	Addressed.	Key challenges clearly	identified	challenges vaguely
	comprehensively	Key challenges clearly	identified and briefly	Few appropriate	identified
	addressed and	identified and explained	explained	references used	No or inappropriate
	circumstantiated	Numerous appropriate	Several appropriate		references used
	Key challenges clearly	references	references used		
	identified,				
	comprehensively				
	explained and rationale				
	justified				
	Numerous appropriate				
	references from a wide				
	range of sources used				

Assignment 2				
Science in Context				
50%				
Week 12				
2000 words or equivalent				
3,4,5				

Task Description

This assignment requires you to design two scientific investigations based on a local problem or issue that links **science**, **mathematics** and **technology**. The **science**, **mathematics** and **technology** content description must come the Australia Curriculum.

When you have decided the problem or issue from your local area, you will need to,

- Use appropriate methodology to 'find out' the problems in your local area. Then analyse the data to present a coherent and sustained argument for the choice of a particular problem to investigate in terms of a year 9 student's interest,
- Outline sub-strands, content descriptions you will use for the three curriculum areas in the planning the two scientific investigations for your students,
- Present your investigations and include working scientifically, then
- Preform ONE of the investigations and present
 - all data/results: tables and graphs,
 - experimental analysis and conclusions ,
 - demonstration of an understanding of the science concepts,
- Critique of the scientific investigation relevance and student difficulties

This assignment is about the quality and creativity of the tasks, keeping in mind the outcome is to engage and activate year 9 classroom learners.

ASSIGNMENT 2 ECM501 GRADING CRITERIA

	HD 100-85	D 84-75	C 74-65	P 64-50	F <50
Local issue and	Problem research clear,	Problem research clear,	Problem research present	Problem research present	Superficial and not specific.
the curriculum	works with detailed analysis and interpretation	works presented and	but not clear, focused or made explicit Background & relevant works superficially surveyed Generally relevant and accurate use of the curriculum links.	but not clear, focused or made explicit Background & relevant works superficially surveyed Relevant and sometimes not specific use of the curriculum links.	Little attempt to use of the curriculum links.
	Demonstrates flair, originality and creativity in the synthesis of investigations to engage with the local issue.	Demonstrates coherent and consistent synthesis of investigations to engage with the local issue.	Demonstrates consistency in the synthesis of investigations to engage with the local issue.	Demonstrates a basic level of consistency in the synthesis of investigations to engage with the local issue.	Demonstrates little understanding in synthesis of investigations and the relationship to the local issue.

Science strands/domai nsand outcomes	Strands/Sub-strands, Content Description, Elaborations are identified correctly. Outcomes are appropriate	Strands/ Sub-strands, Content Description, Elaborations are identified correctly, but	Strands/Sub-strands,Content Description, Elaborations are identified incorrectly/not apparent.
Mathematics strands/domai nsand outcomes	Strands/Sub-strands, Content Description, Elaborations are identified correctly. Outcomes are appropriate	some are incomplete Strands/ Sub-strands, Content Description, Elaborations are identified correctly, but some are incomplete	Strands/ Sub-strands, Content Description, Elaborations are identified incorrectly/not apparent
Technology Strands/domai n and outcomes	Strands/Sub-strands, Content Description, Elaborations are identified correctly. Outcomes are appropriate	Strands/ Sub-strands, Content Description, Elaborations are identified incorrectly/not apparent	Strands/ Sub-strands, Content Description, Elaborations are identified incorrectly/not apparent

Working Scientifically Experiments engage students	Experiment uses the working scientifically and is highly integrated and clearly stated, with learners having a clear understanding of what is expected. Demonstrates a very highly articulated understanding of working scientifically Activity is designed to creatively stimulate, engage and motivated students using the working scientifically	with learners having a clear understanding of what is expected. Demonstrates a high level understanding of working		Experiment uses working scientifically stated, with earners having some understanding of what is expected. Demonstrates some understanding of working scientifically Some designed to stimulate, engage and motivated students using the working scientifically	No use the working scientifically Demonstrates little understanding of working scientifically, No activities are designed to stimulate, engage and motivated students using the working scientifically
Safety/student management issues.	the working scientifically A detailed account of safety	/student management issues	are provided	Accounts of safety/student management issues/strategies are provided and are limited	An account of safety/student management issues/strategies is not provided.

Data, results, and graphs	data in a clear and concise manner. Accurate observations and interpretations of data.			Data is presented in tabular form, results are articulated, graph presents data, some issues in presentation; graph, table or both	Data is not presented in tabular form, results are not clearly articulated, graph presents little data Not implicit stated or absent
Conclusions	Conclusion is clearly articulated, complete, stated in scholarly language. Highly developed and detailed connections between data, results,	articulated, complete, stated in scholarlyarticulated stated in scholarly language.articulated stated in articulated stated in scholarly language.language.DemonstratesWell-developed connections betweenconnections betweenDdata, results, graphsconnections		Conclusion is articulated, some ambiguity in explanations Demonstrates simple connections between data, results, graphs	Conclusion is not well articulated, ambiguity in explanations or missing with little demonstrated understanding of the connections between data, results, graphs and the science concept(s).
	graphs and the science concept(s).	and the science concept(s).	concept(s).	and the science concept(s).	

Reflection on	Reflection demonstrates	Reflection demonstrates	Reflection demonstrates	Reflection	Reflection demonstrates little
the	highly developed	highly developed	conceptual	demonstrates some	conceptual understanding.
investigation	conceptual	conceptual	understanding, stated in	conceptual	
	understanding of	understanding, stated in	effective language with	understanding,	
	organizational and	effective sharp language	sources acknowledged.		Relevance is not clearly
	student issues, stated in	with sources		Relevance is not	established for the student
	effective sharp language.	acknowledged.	Relevance is established	clearly established for	activity with little understanding
	Uses wide range of		for the student activity	the student activity	of student organizational issues,
	referenced sources in	Relevance is established	with an understanding	with some	and implications for student
	the demonstration of	for the student activity	of student	understanding of	engagement
	conceptual	with a detailed	organizational issues,	student organizational	
	understanding.	understanding of student	and implications for	issues, and	Not implicit stated or absent
		organizational issues,	student engagement	implications for	
	Relevance is established	with developed		student engagement	
	for the student activity	implications for student	Assumptions of		
	with a very detailed	engagement	relevance and student	Some presentation of	
	understanding of student		difficulties are clearly	an argument for	
	organizational issues,	Assumptions of	stated;	relevance for	
	with fully developed	relevance and student	Presents a structure for	engagement and	
	implications for student	difficulties are clearly	relevance for	student issues.	
	engagement	stated;	engagement and		
		Presents a well-	student issues.		
	Assumptions of	developed and			
	relevance and student	structured argument for			
	difficulties are clearly	relevance for			
	stated;	engagement and			
	Presents a highly	student issues.			
secondary scienc					26 PAGE
,	structured argument				
	for relevance for				
	student engagement				

Science	Demonstrates highly	Demonstrates highly	Demonstrates	Demonstrates some	Demonstrates little conceptual
Concept(s)	developed conceptual	developed conceptual	conceptual	conceptual	understanding.
	understanding.	understanding.	understanding.	understanding.	
	Extensive and creative	Demonstrates the	Demonstrates some		Not implicit stated or absent
	demonstrations of the	linking of a number of	linking of a number of		
	linking of a number of	science concepts and	science concepts and the		
	science concepts and	experiment.	experiment		
	experiment.				