

Soils & Materials 3 M23357

Coursework assignment

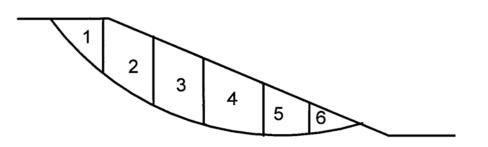
Dr Mehdi Rouholamin <u>Mehdi.Rouholamin@port.ac.uk</u>

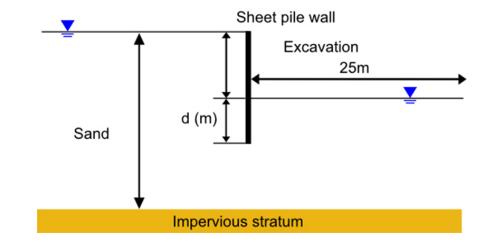
Coursework

• Counts for 40% of the module mark

See the coursework assignment provided on Moodle for more details

 To be submitted electronically via Moodle before 11 pm on Friday 4/12/20


Coursework



- Assess the stability of a cut slope in soft clay in the short and long term.
- Evaluate the impact of pore water pressures on slope stability.
- Identity suitable remedial techniques for unstable slopes.

- To present calculations for the embedment depth of a sheet pile cofferdam
- Evaluate stability and construction issues.

Artefact 1-A, Slope stability report

Groups 1&4: φ'= 25 °, c'=2.6kPa, γ_d=17kN/m³, γ_{sat}=18kN/m³

Groups 2&5: φ'= 24 °, c'=2.5kPa, γ_d=18kN/m³, γ_{sat}=19kN/m³

Groups 3&6: φ'= 26 °, c'=2.3kPa, γ_d=18.5kN/m³, γ_{sat}=19.5kN/m³

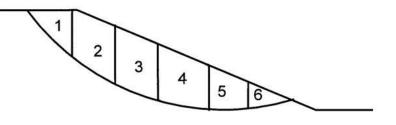
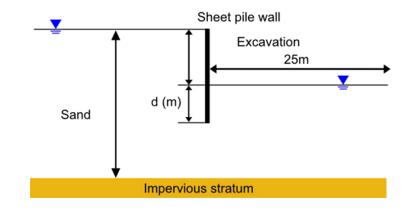


Table 1

Slice	1	2	3	4	5	6
α°	45	33	22	9	-2	-12
Area of slice, m ²	9.61	20.47	23.37	24.25	12.85	5.20
Arc length, m	6.2	4.9	4.6	5.06	3.8	4.2
Mean height of WT. above base of slice, m	0	2.82	4.41	4.05	2.625	0.375

Artefact 1-B, Cofferdam report

Table 1: Soil Properties:


Group ID	Layer	Description	Depth	ρ (Mg/m³)	c' (kN/m²)	Φ'	E (MN/m²)	k (m/s)
1&4	River bed	Sand	25	1.9	0	34	16	2.4 x 10 ⁻⁴
2&5	River bed	Sand	25	2	0	35	17	4 x 10 ⁻⁴
3&6	River bed	Sand	25	2.1	0	36	18	6 x 10 ⁻⁴

Wall properties:

Take the Young's Modulus (E) of the wall to be $3.00 \times 107 \text{ KN.m}^2/\text{m.}$ Take the Moment of Inertia (I) of the wall to be $8.48 \times 10-3 \text{ m}^4/\text{m}$ run.

Strut properties:

Take the Young's Modulus (E) of the wall to be 2.00 x 108 KN.m²/m. Take the Cross Sectional Area (A) of the wall to be 0.0625 m². Take the Spacing of the struts to be 1m. Take the Pre-stress/strut to be 100kN.

Submission

- <u>Must be submitted electronically</u> through the coursework submission link on Moodle before 11:00 pm on 4/12/20
- This deadline is strictly enforced
- Don't leave it until the last moment
- It can take several minutes to upload your work, especially if the system is busy
- If the work is not uploaded by 11:00pm, it will be treated as a late submission

Submission

- Your report must be a single pdf file
- Include your student number in the filename (e.g. 858585-coursework.pdf)
- Do not include your name anywhere in the report
- You must include the completed student assignment marks sheet as the first page of the file you submit

Late submission

Your work must be uploaded by the deadline.

- Late submissions are capped at 40%
 - even if only a few minutes late
 - unless you have valid extenuating circumstances

Questions?